化工学报 ›› 2022, Vol. 73 ›› Issue (2): 887-893.DOI: 10.11949/0438-1157.20211197

• 能源和环境工程 • 上一篇    下一篇

高效可见光响应微生物/光电化学耦合人工光合作用系统

王淋1,2(),付乾1,2(),肖帅1,2,李卓1,2,李俊1,2,张亮1,2,朱恂1,2,廖强1,2   

  1. 1.重庆大学低品位能源利用及系统教育部重点实验室,重庆 400030
    2.重庆大学工程热物理研究所,重庆 400030
  • 收稿日期:2021-08-19 修回日期:2021-10-09 出版日期:2022-02-05 发布日期:2022-02-18
  • 通讯作者: 付乾
  • 作者简介:王淋(1996—),男,硕士研究生,513137205@qq.com
  • 基金资助:
    国家自然科学基金面上项目(51776025)

High-efficient visible light responsive microbial photoelectrochemical system for CO2 reduction to CH4

Lin WANG1,2(),Qian FU1,2(),Shuai XIAO1,2,Zhuo LI1,2,Jun LI1,2,Liang ZHANG1,2,Xun ZHU1,2,Qiang LIAO1,2   

  1. 1.Key Laboratory of Low-grade Energy Utilization Technology and System of Ministry of Education, Chongqing University, Chongqing 400030, China
    2.Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
  • Received:2021-08-19 Revised:2021-10-09 Online:2022-02-05 Published:2022-02-18
  • Contact: Qian FU

摘要:

人工光合作用系统可以利用太阳能将二氧化碳转化为高附加值的化学产品,能够有效地解决人类面临的能源与环境问题,极具发展前景。然而,人工光合作用系统面临产物选择性差、过电位高、太阳能利用率低等重大挑战。本文提出了一种新型微生物/光电化学耦合人工光合作用系统,该系统由固碳产甲烷微生物阴极和复合光阳极组成,其中复合光阳极由TiO2电极与硅太阳能电池串联组成。该耦合系统在仅输入太阳能且不施加外部偏压的条件下,可实现化学燃料甲烷的产生。甲烷产量高达(10.7±0.2) L·d-1·m-2,相比已有研究高出13倍,同时该耦合系统固碳产甲烷的法拉第效率高达98.5%±2.1%,远高于传统的人工光合作用系统。该新型人工光合作用系统的提出,为制取具有高附加值的化学产品和发展可再生能源提供了新的思路。

关键词: 人工光合作用, 复合光阳极, 生物催化, CO2还原

Abstract:

The artificial photosynthesis system can use solar energy to convert carbon dioxide into high value-added chemical products, which can effectively solve the energy and environmental problems faced by mankind, and has great development prospects. However, artificial photosynthesis systems face major challenges such as poor product selectivity, high overpotential, and low solar energy utilization. Here we present a hybrid microbial-photoelectrochemical system comprised of a monolithic photoanode, which is assembled by attaching a silicon cell at the reverse side of a TiO2 nanorod array for water oxidation, and a biocathode that is capable of reducing CO2 to CH4. The hybrid system shows an excellent CH4 production rate of (10.7±0.2) L·d-1·m-2, around 13 times higher than that of previous studies, and achieved a highly selective CO2 reduction to CH4 with a Faradaic efficiency up to 98.5%±2.1%. This work proposes an effective approach for the generation of valuable products using artificial photosynthesis.

Key words: artificial photosynthesis, monolithic photoanode, biocatalysis, CO2 reduction

中图分类号: