化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3565-3574.DOI: 10.11949/0438-1157.20200350
贺国达1,2,3(),汤睿1,2(
),段学志4,谢雷东1,傅杰1,2,戴建兴1,钱渊1,2,王建强1,2,5
收稿日期:
2020-04-03
修回日期:
2020-05-13
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
汤睿
作者简介:
贺国达(1994—),男,硕士研究生,基金资助:
Guoda HE1,2,3(),Rui TANG1,2(
),Xuezhi DUAN4,Leidong XIE1,Jie FU1,2,Jianxing DAI1,Yuan QIAN1,2,Jianqiang WANG1,2,5
Received:
2020-04-03
Revised:
2020-05-13
Online:
2020-08-05
Published:
2020-08-05
Contact:
Rui TANG
摘要:
LiF-BeF2熔盐作为熔盐堆的冷却剂及核燃料溶剂近年来备受关注,其扩散行为与核燃料的相容性和结构材料的腐蚀性密切相关。采用Car-Parrinello分子动力学模拟研究了LiF-BeF2熔盐的微观结构及基于此结构的扩散行为。研究结果表明Be2+具有较强的络合能力,易形成中性网络聚合体,且其数量随温度的增加而减少;液态LiF-BeF2熔盐中除了包含聚合体,还包含游离的F-、Li+、BeF3-和BeF42-,而非完全游离的F-、Li+和Be2+。基于此微观结构获得的自扩散系数及电导率与实验结果吻合较好,且电导率随温度变化符合Arrhenius模型,而不是目前文献认为的无限稀释溶液的线性模型。
中图分类号:
贺国达, 汤睿, 段学志, 谢雷东, 傅杰, 戴建兴, 钱渊, 王建强. LiF-BeF2熔盐微观结构及扩散特性的分子动力学研究[J]. 化工学报, 2020, 71(8): 3565-3574.
Guoda HE, Rui TANG, Xuezhi DUAN, Leidong XIE, Jie FU, Jianxing DAI, Yuan QIAN, Jianqiang WANG. Molecular dynamics investigation on microstructure and diffusion properties of LiF-BeF2 molten salt[J]. CIESC Journal, 2020, 71(8): 3565-3574.
离子对 | 第一峰半径/? | 配位数 | ||
---|---|---|---|---|
FPMD | 文献结果 | FPMD | 文献结果 | |
Be-F | 1.58 | 1.58① | 4 | 4① |
Li-F | 1.86 | 1.85① | 4.6 | 4① |
F-F | 2.61 | 2.56~3.02① | 12.7 | 8① |
Be-Be | 2.98 | 3.03② | 0.9 | 0.9② |
Be-Li | 3.06 | 3.07② | 7.6 | 6.9② |
Li-Li | 3.10 | 3.05② | 5.8 | 5.4② |
表1 各离子对的平均第一峰半径和第一配位数
Table 1 The average coordination number and the first peak radius of each ion pairs
离子对 | 第一峰半径/? | 配位数 | ||
---|---|---|---|---|
FPMD | 文献结果 | FPMD | 文献结果 | |
Be-F | 1.58 | 1.58① | 4 | 4① |
Li-F | 1.86 | 1.85① | 4.6 | 4① |
F-F | 2.61 | 2.56~3.02① | 12.7 | 8① |
Be-Be | 2.98 | 3.03② | 0.9 | 0.9② |
Be-Li | 3.06 | 3.07② | 7.6 | 6.9② |
Li-Li | 3.10 | 3.05② | 5.8 | 5.4② |
温度/K | 数量百分比/% | |||
---|---|---|---|---|
游离F-/F- | 游离BeF3-/Be2+ | 游离BeF42-/Be2+ | 游离Li+/Li+ | |
773 | 10.09 | 3.00 | 15.00 | 36.67 |
873 | 10.27 | 3.67 | 16.67 | 39.07 |
973 | 10.42 | 4.67 | 17.67 | 40.83 |
表2 模拟体系中各种游离结构的数量百分比
Table 2 Percentage of various free structures in the simulation system
温度/K | 数量百分比/% | |||
---|---|---|---|---|
游离F-/F- | 游离BeF3-/Be2+ | 游离BeF42-/Be2+ | 游离Li+/Li+ | |
773 | 10.09 | 3.00 | 15.00 | 36.67 |
873 | 10.27 | 3.67 | 16.67 | 39.07 |
973 | 10.42 | 4.67 | 17.67 | 40.83 |
离子 | Arrhenius常数A/K | 扩散活化能Ea/kJ/mol |
---|---|---|
F- | 1.52×10-6 | 41.98 |
Li+ | 4.00×10-7 | 27.40 |
Be2+ | 2.26×10-6 | 45.21 |
BeF3- | 1.33×10-6 | 40.66 |
BeF42- | 1.91×10-6 | 43.72 |
表3 式(7)中的系数
Table 3 The coefficient of Eq. (7)
离子 | Arrhenius常数A/K | 扩散活化能Ea/kJ/mol |
---|---|---|
F- | 1.52×10-6 | 41.98 |
Li+ | 4.00×10-7 | 27.40 |
Be2+ | 2.26×10-6 | 45.21 |
BeF3- | 1.33×10-6 | 40.66 |
BeF42- | 1.91×10-6 | 43.72 |
1 | 蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统[J]. 物理, 2016, 45(9): 578-590. |
Cai X Z, Dai Z M, Xu H J. Thorium molten salt reactor nuclear energy system[J]. Physics, 2016, 45(9): 578-590. | |
2 | Rosenthal M W, Briggs R B, Kasten P R. Molten salt reactor program semiannual progress report (ORNL-4449)[R]. USA: Oak Ridge National Laboratory, 1969. |
3 | Williams D F, Toth L M, Clarno K T. Assessment of candidate molten salt coolants for the advanced high-temperature reactor (ORNL/TM-2006/12)[R]. USA: Oak Ridge National Laboratory, 2006. |
4 | Forsberg C W, Peterson P F, Pickard P S. Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity[J]. Nuclear Technology, 2003, 144(3): 289-302. |
5 | Hargraves R, Moir R. Liquid fluoride thorium reactors: an old idea in nuclear power gets reexamined[J]. American Scientist, 2010, 98(4): 304-313. |
6 | Petti D A, Smolik G R, Simpson M F, et al. JUPITER-Ⅱ molten salt Flibe research: an update on tritium, mobilization and redox chemistry experiments[J]. Fusion Engineering and Design, 2006, 81(8-14): 1439-1449. |
7 | 曾友石, 杜林, 皮力, 等. 氢在FLiNaK(LiF-NaF-KF)熔盐中的渗透行为[J]. 核技术, 2015, 38(2): 73-78. |
Zeng Y S, Du L, Pi L, et al. Hydrogen permeation behavior in FLiNaK(LiF-NaF-KF) molten salt[J]. Nuclear Techniques, 2015, 38(2): 73-78. | |
8 | Calderoni P, Sharpe P, Hara M, et al. Measurement of tritium permeation in Flibe (2LiF-BeF2)[J]. Fusion Engineering & Design, 2008, 83(7): 1331-1334. |
9 | Anderl R A, Fukada S, Smolik G R, et al. Deuterium\tritium behavior in Flibe and Flibe-facing materials[J]. Journal of Nuclear Materials, 2004, 329(part B): 1327-1331. |
10 | Mathews A L, Baes C F. Oxide chemistry and thermodynamics of molten lithium fluoride-beryllium fluoride solutions[J]. Inorganic Chemistry, 1968, 7(2): 373-382. |
11 | Iwamoto N, Tsunawaki Y, Umesaki N, et al. Self diffusion of lithium in molten LiBeF3 and Li2BeF4[J]. Journal of the Chemical Society Faraday Transactions, 1979, 75(9): 1277-1283. |
12 | Ohmichi T, Ohno H, Furukawa K. Self-diffusion of fluorine in molten dilithium tetrafluoroberyllate[J]. The Journal of Physical Chemistry, 1976, 80(14): 1628-1631. |
13 | Robbins G D, Braunstein J. Molten salt reactor program semiannual progress report for period ending february 29(ORNL-4254)[R]. USA: Oak Ridge National Laboratory, 1968. |
14 | 朱宇, 陆小华, 丁皓, 等. 分子模拟在化工应用中的若干问题及思考[J]. 化工学报, 2004, 55(8): 1213-1223. |
Zhu Y, Lu X H, Ding H, et al. Molecular simulation in chemical engineering[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(8): 1213-1223. | |
15 | Rahman A. Structure and motion in liquid BeF2, LiBeF3, and LiF from molecular dynamics calculations[J]. Journal of Chemical Physics, 1972, 57(7): 3010. |
16 | Heaton R, Brooks R, Madden P, et al. A first-principles description of liquid BeF2 and its mixtures with LiF: potential development and pure BeF[J]. Journal of Physical Chemistry B, 2006, 110(23): 11454-11460. |
17 | Salanne M, Simon C, Turq P, et al. A first-principles description of liquid BeF2 and its mixtures with LiF2: network formation in LiF-BeF2[J]. The Journal of Physical Chemistry B, 2006, 110(23): 11461-11467. |
18 | Wilson M, Madden P A. Polarization effects in ionic systems from first principles[J]. Journal of Physics Condensed Matter, 1993, 5(17): 2687-2706. |
19 | Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. |
20 | Nam H O, Bengtson A, Vortler K, et al. First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute[J]. Journal of Nuclear Materials, 2014, 449(1/2/3): 148-157. |
21 | 宁汇, 侯民强, 杨德重. 二元混合离子液体的电导率与离子间的缔合作用[J]. 物理化学学报, 2013, 29(10): 2107-2113. |
Ning H, Hou M Q, Yang D Z. Ionic association in binary ionic liquids by conductivity[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2107-2113. | |
22 | Klix A, Suzuki A, Terai T. Study of tritium migration in liquid Li2BeF4 with ab initio molecular dynamics[J]. Fusion Engineering and Design, 2006, 81(1-7): 713-717. |
23 | Becke A D P. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098-3100. |
24 | Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B: Condensed Matter, 1988, 37(2): 785-789. |
25 | Krack M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals[J]. Theoretical Chemistry Accounts, 2005, 114(1/2/3): 145-152. |
26 | Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn[J]. Physical Review B, 1998, 58(7): 3641-3662. |
27 | Goedecker S, Teter M, Hutter J. Separable dual-space Gaussian pseudopotentials[J]. Physical Review B, 1996, 54(3): 1703-1710. |
28 | Car R. Unified approach for molecular dynamics and density functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474. |
29 | Dai J X, Han H, Li Q N, et al. First-principle investigation of the structure and vibrational spectra of the local structures in LiF-BeF2 molten salts[J]. Journal of Molecular Liquids, 2016, 213: 17-22. |
30 | Kleinman L, Bylander D M. Efficacious form for model pseudopotentials[J]. Physical Review Letters, 1982, 48(20): 1425-1428. |
31 | Chadi D J. Special points for brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747. |
32 | Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 8(1): 511-519. |
33 | Zhang Q R, Han Y, Wu L C. Influence of electrostatic field on the adsorption of phenol on single-walled carbon nanotubes a study by molecular dynamics simulation[J]. Chemical Engineering Journal, 2019, 363: 278-284. |
34 | Madden P A, Salanne M, Corradini D. Coordination numbers and physical properties in molten salts and their mixtures[J]. Faraday Discussions, 2016, 190: 471-486. |
35 | Pauvert O, Salanne M, Zanghi D, et al. Ion specific effects on the structure of molten AF-ZrF4 systems (A+ = Li+, Na+, and K+ )[J]. The Journal of Physical Chemistry B, 2011, 115(29): 9160-9167. |
36 | Rabani E, Gezelter J D, Berne B J. Calculating the hopping rate for self-diffusion on rough potential energy surfaces: cage correlations[J]. The Journal of Chemical Physics, 1997, 107(17): 6867-6876. |
37 | 阎建民, 罗先金, Krishna R. 非电解质溶液扩散系数的理论研究评述[J]. 化工学报, 2006, 57(10): 2263-2269. |
Yan J M, Luo X J, Krishna R. Review on theoretical calculation of diffusion coefficients in non-electrolytic solutions[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2263-2269. | |
38 | Burrell G L, Burgar I M, Gong Q, et al. NMR relaxation and self-diffusion study at high and low magnetic fields of ionic association in protic ionic liquids[J]. Journal of Physical Chemistry B, 2010, 114(35): 11436-11443. |
[1] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[2] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[3] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[4] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[5] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[6] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[7] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[8] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[9] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[10] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[11] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[12] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[13] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[14] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[15] | 周培旭, 李亚伦, 叶恭然, 庄园, 吴曦蕾, 郭智恺, 韩晓红. 有限空间内工质物性对制冷剂泄漏扩散特性的影响[J]. 化工学报, 2023, 74(2): 953-967. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 724
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||