化工学报 ›› 2020, Vol. 71 ›› Issue (9): 3950-3962.DOI: 10.11949/0438-1157.20200456
徐静1,2,3(),由紫暄1,2,3,4,张君奇1,2,3,陈正1,2,3,吴德光5,李锋1,2,3,4(),宋浩1,2,3,4()
收稿日期:
2020-04-29
修回日期:
2020-05-25
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
李锋,宋浩
作者简介:
徐静(1994—),男,硕士研究生,基金资助:
Jing XU1,2,3(),Zixuan YOU1,2,3,4,Junqi ZHANG1,2,3,Zheng CHEN1,2,3,Deguang WU5,Feng LI1,2,3,4(),Hao SONG1,2,3,4()
Received:
2020-04-29
Revised:
2020-05-25
Online:
2020-09-05
Published:
2020-09-05
Contact:
Feng LI,Hao SONG
摘要:
电活性生物膜是由电能细胞分泌的胞外多糖、蛋白、胞外DNA(extracellular DNA, eDNA)、菌毛等成分聚集,与细胞本身相互交联形成的导电多聚体。以多菌群落形态展现,在微生物燃料电池、微生物电合成、高值化学品生产、重金属污染处理、医疗等领域中具有至关重要的作用,是微生物电催化系统研究的核心之一。但自然状态下的电活性生物膜因厚度、结构稳定性、生物量等因素的限制,严重制约了电子传递效率。综述了近五年利用合成生物学改造电活性生物膜的研究进展,系统探讨了工程生物膜的构建、结构成分、导电性能以及应用,为将来进一步实现高效电催化奠定基础。
中图分类号:
徐静, 由紫暄, 张君奇, 陈正, 吴德光, 李锋, 宋浩. 合成生物学方法改造电活性生物膜研究进展[J]. 化工学报, 2020, 71(9): 3950-3962.
Jing XU, Zixuan YOU, Junqi ZHANG, Zheng CHEN, Deguang WU, Feng LI, Hao SONG. Advances in engineering electroactive biofilms by synthetic biology approaches[J]. CIESC Journal, 2020, 71(9): 3950-3962.
1 | Lovley D R. Electromicrobiology[J]. Annual Review of Microbiology, 2012, 66: 391-409. |
2 | Nealson K H, Rowe A R. Electromicrobiology: realities, grand challenges, goals and predictions[J]. Microbial Biotechnology, 2016, 9(5): 595-600. |
3 | Nealson K H. Bioelectricity (electromicrobiology) and sustainability[J]. Microbial Biotechnology, 2017, 10(5): 1114-1119. |
4 | Lovley D R. Bug juice: harvesting electricity with microorganisms[J]. Nature Reviews Microbiology, 2006, 4(7): 497-508. |
5 | Logan B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009, 7(5): 375-381. |
6 | Moscoviz R, Toledo-Alarcon J, Trably E, et al. Electro-fermentation: how to drive fermentation using electrochemical systems[J]. Trends in Biotechnology, 2016, 34(11): 856-865. |
7 | Schievano A, Sciarria T P, Vanbroekhoven K, et al. Electro-fermentation - merging electrochemistry with fermentation in industrial applications[J]. Trends in Biotechnology, 2016, 34(11): 866-878. |
8 | Jafary T, Daud W R W, Ghasemi M, et al. Biocathode in microbial electrolysis cell: present status and future prospects[J]. Renewable & Sustainable Energy Reviews, 2015, 47: 23-33. |
9 | Kadier A, Kalil M S, Abdeshahian P, et al. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals[J]. Renewable & Sustainable Energy Reviews, 2016, 61: 501-525. |
10 | Watnick P, Biofilm Kolter R., city of microbes[J]. Journal of Bacteriology, 2000, 182(10): 2675-2679. |
11 | Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623-633. |
12 | Costa O Y A, Raaijmakers J M, Kuramae E E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation[J]. Frontiers in Microbiology, 2018, 9: 1636. |
13 | Kimkes T E P, Heinemann M. How bacteria recognise and respond to surface contact[J]. FEMS Microbiology Reviews, 2020, 44(1): 106-122. |
14 | Annous B A, Fratamico P M, Smith J L. Scientific status summary[J]. Journal of Food Science, 2009, 74(1): R24-R37. |
15 | Schröder U, Harnisch F, Angenent L T. Microbial electrochemistry and technology: terminology and classification[J]. Energy & Environmental Science, 2015, 8(2): 513-519. |
16 | Stams A J M, Plugge C M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nature Reviews Microbiology, 2009, 7(8): 568-577. |
17 | Thrash J C, Coates J D. Review: direct and indirect electrical stimulation of microbial metabolism[J]. Environmental Science & Technology, 2008, 42(11): 3921-3931. |
18 | Richter H, Nevin K P, Jia H, et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer[J]. Energy & Environmental Science, 2009, 2(5): 506-516. |
19 | Nevin K P, Kim B C, Glaven R H, et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells[J]. PloS One, 2009, 4(5): e5628. |
20 | Shi L, Dong H, Reguera G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662. |
21 | Kumar R, Singh L, Zularisam A W. Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications[J]. Renewable & Sustainable Energy Reviews, 2016, 56: 1322-1336. |
22 | Okamoto A, Nakamura R, Hashimoto K. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes[J]. Electrochimica Acta, 2011, 56(16): 5526-5531. |
23 | Breuer M, Rosso K M, Blumberger J, et al. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities[J]. Journal of the Royal Society Interface, 2015, 12(102): 20141117. |
24 | Bretschger O, Obraztsova A, Sturm C A, et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants[J]. Applied and Environmental Microbiology, 2007, 73(21): 7003-7012. |
25 | Leys D, Scrutton N S. Electrical circuitry in biology: emerging principles from protein structure[J]. Current Opinion in Structural Biology, 2004, 14(6): 642-647. |
26 | Leung K M, Wanger G, El-Naggar M Y, et al. Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior[J]. Nano Letters, 2013, 13(6): 2407-2411. |
27 | Pirbadian S, Barchinger S E, Leung K M, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12883-12888. |
28 | Reguera G, Mccarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101. |
29 | Strycharz-Glaven S M, Snider R M, Guiseppi-Elie A, et al. On the electrical conductivity of microbial nanowires and biofilms[J]. Energy & Environmental Science, 2011, 4(11): 4366-4379. |
30 | Brutinel E D, Gralnick J A. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella[J]. Applied Microbiology and Biotechnology, 2012, 93(1): 41-48. |
31 | Lies D P, Hernandez M E, Kappler A, et al. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms[J]. Applied and Environmental Microbiology, 2005, 71(8): 4414-4426. |
32 | Pham T H, Boon N, De Maeyer K, et al. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation[J]. Applied Microbiology and Biotechnology, 2008, 80(6): 985-993. |
33 | Wang Y, Kern S E, Newman D K. Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosavia extracellular electron transfer[J]. Journal of Bacteriology, 2010, 192(1): 365-369. |
34 | Yang Y, Xu M, Guo J, et al. Bacterial extracellular electron transfer in bioelectrochemical systems[J]. Process Biochemistry, 2012, 47(12): 1707-1714. |
35 | Coursolle D, Baron D B, Bond D R, et al. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis[J]. Journal of Bacteriology, 2010, 192(2): 467-474. |
36 | Jiang X, Hu J, Fitzgerald L A, et al. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(39): 16806-16810. |
37 | Kotloski N J, Gralnick J A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis[J]. Mbio, 2013, 4(1): e00553-12. |
38 | Von Canstein H, Ogawa J, Shimizu S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied and Environmental Microbiology, 2008, 74(3): 615-623. |
39 | Okamoto A, Nakamura R, Nealson K H, et al. Bound flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter[J]. Chemelectrochem, 2014, 1(11): 1808-1812. |
40 | Okamoto A, Saito K, Inoue K, et al. Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species[J]. Energy & Environmental Science, 2014, 7(4): 1357-1361. |
41 | Thirumurthy M A, Jones A K. Geobacter cytochrome OmcZs binds riboflavin: implications for extracellular electron transfer[J]. Nanotechnology, 2020, 31(12): 124001. |
42 | Rabaey K, Boon N, Hofte M, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science & Technology, 2005, 39(9): 3401-3408. |
43 | Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire[J]. Nature Reviews Microbiology, 2017, 15(5): 271-284. |
44 | Irie Y, Borlee B R, O'Connor J R, et al. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20632-20636. |
45 | Baraquet C, Harwood C S. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18478-18483. |
46 | Thormann K M, Duttler S, Saville R M, et al. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP[J]. Journal of Bacteriology, 2006, 188(7): 2681-2691. |
47 | Liu T, Yu Y Y, Deng X P, et al. Enhanced Shewanella biofilm promotes bioelectricity generation[J]. Biotechnology and Bioengineering, 2015, 112(10): 2051-2059. |
48 | Benedetti I, De Lorenzo V, Nikel P I. Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes[J]. Metabolic Engineering, 2016, 33: 109-118. |
49 | Hu Y, Wu Y, Mukherjee M, et al. A near-infrared light responsive c-di-GMP module-based AND logic gate in Shewanella oneidensis[J]. Chemical Communications, 2017, 53(10): 1646-1648. |
50 | Hu Y, Liu X, Ren A T M, et al. Optogenetic modulation of a catalytic biofilm for the biotransformation of indole into tryptophan[J]. Chemsuschem, 2019, 12(23): 5142-5148. |
51 | Von Bodman S B, Willey J M, Diggle S P. Cell-cell communication in bacteria: united we stand[J]. Journal of Bacteriology, 2008, 190(13): 4377-4391. |
52 | 孙琦, 梁经纬, 王琳, 等. 细菌群体感应抑制剂的研究进展[J]. 化学与生物工程, 2016, 33(2): 15-21. |
Sun Q, Liang J W, Wang L, et al. Research progress of bacterial quorum sensing inhibitors[J]. Chemistry & Bioengineering, 2016, 33 (2) : 15-21. | |
53 | Suga H, Smith K M. Molecular mechanisms of bacterial quorum sensing as a new drug target[J]. Current Opinion in Chemical Biology, 2003, 7(5): 586-591. |
54 | Li Y H, Tian X. Quorum sensing and bacterial social interactions in biofilms[J]. Sensors, 2012, 12(3): 2519-2538. |
55 | Mangwani N, Kumari S, Das S. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology[J]. Biotechnology and Genetic Engineering Reviews,2016,32(1/2): 43-73. |
56 | Monzon O, Yang Y, Li Q, et al. Quorum sensing autoinducers enhance biofilm formation and power production in a hypersaline microbial fuel cell[J]. Biochem. Eng. J., 2016,109:222-227. |
57 | Chen S, Jing X, Tang J, et al. Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms[J]. Biosensors and Bioelectronics, 2017, 97: 369-376. |
58 | Flemming H C, Neu T R, Wozniak D J. The EPS matrix: the “house of biofilm cells”[J]. Journal of Bacteriology, 2007, 189(22): 7945-7947. |
59 | Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances, 2010, 28(6): 882-894. |
60 | Charles C J, Rout S P, Patel K A, et al. Floc formation reduces the pH stress experienced by microorganisms living in alkaline environments[J]. Applied and Environmental Microbiology, 2017, 83(6): e02985-16. |
61 | Petrova O E, Sauer K. Sticky situations: key components that control bacterial surface attachment[J]. Journal of Bacteriology, 2012, 194(10): 2413-2425. |
62 | Ma L, Lu H, Sprinkle A, et al. Pseudomonas aeruginosa PSl is a galactose- and mannose-rich exopolysaccharide[J]. Journal of Bacteriology, 2007, 189(22): 8353-8356. |
63 | Zhang J, Poh C L. Regulating exopolysaccharide gene wcaF allows control of Escherichia coli biofilm formation[J]. Scientific Reports, 2018, 8(1): 13127. |
64 | Das T, Sharma P K, Busscher H J, et al. Role of extracellular DNA in initial bacterial adhesion and surface aggregation[J]. Applied and Environmental Microbiology, 2010, 76(10): 3405-3408. |
65 | Yu R, Hou C, Liu A, et al. Extracellular DNA enhances the adsorption of Sulfobacillus thermosulfidooxidans strain ST on chalcopyrite surface[J]. Hydrometallurgy, 2018, 176: 97-103. |
66 | Allesen-Holm M, Barken K B, Yang L, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms[J]. Molecular Microbiology, 2006, 59(4): 1114-1128. |
67 | Das T, Sehar S, Manefield M. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development[J]. Environmental Microbiology Reports, 2013, 5(6): 778-786. |
68 | Barken K B, Pamp S J, Yang L, et al. Roles of type Ⅳ pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms[J]. Environmental Microbiology, 2008, 10(9): 2331-2343. |
69 | Brandstetter K A, Jurcisek J A, Goodman S D, et al. Antibodies directed against integration host factor mediate biofilm clearance from nasopore[J]. Laryngoscope, 2013, 123(11): 2626-2632. |
70 | Novotny L A, Amer A O, Brockson M E, et al. Structural stability of burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein[J]. PloS One, 2013, 8(6): e67629. |
71 | Okshevsky M, Meyer R L. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms[J]. Critical Reviews in Microbiology, 2015, 41(3): 341-352. |
72 | Liao S, Klein M I, Heim K P, et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery[J]. Journal of Bacteriology, 2014, 196(13): 2355-2366. |
73 | Das T, Kutty S K, Kumar N, et al. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation[J]. PloS One, 2013, 8(3): e58299. |
74 | Barnhart M M, Chapman M R. Curli biogenesis and function[J]. Annual Review of Microbiology, 2006, 60: 131-147. |
75 | Seker U O S, Chen A Y, Citorik R J, et al. Synthetic biogenesis of bacterial amyloid nanomaterials with tunable inorganic-organic interfaces and electrical conductivity[J]. ACS Synthetic Biology, 2017, 6(2): 266-275. |
76 | Kalyoncu E, Ahan R E, Olmez T T, et al. Genetically encoded conductive protein nanofibers secreted by engineered cells[J]. RSC Advances, 2017, 7(52): 32543-32551. |
77 | Suo D, Fang Z, Yu Y Y, et al. Synthetic curli enables efficient microbial electrocatalysis with stainless-steel electrode[J]. AIChE Journal, 2020,66(4): e16897. |
78 | Nguyen P Q, Botyanszki Z, Tay P K R, et al. Programmable biofilm-based materials from engineered curli nanofibres[J]. Nature Communications, 2014, 5(1): 623-633. |
79 | Botyanszki Z, Tay P K R, Nguyen P Q, et al. Engineered catalytic biofilms: site-specific enzyme immobilization onto E. coli curli nanofibers[J]. Biotechnology and Bioengineering, 2015, 112(10): 2016-2024. |
80 | Zhou G, Yuan J, Gao H. Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis[J]. Frontiers in Microbiology, 2015, 6: 790. |
81 | De Windt W, Gao H C, Kromer W, et al. AggA is required for aggregation and increased biofilm formation of a hyper-aggregating mutant of Shewanella oneidensis MR-1[J]. Microbiology-Sgm, 2006, 152: 721-729. |
82 | Min D, Cheng L, Zhang F, et al. Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation[J]. Environmental Science & Technology, 2017, 51(9): 5082-5089. |
83 | Watanabe K, Manefield M, Lee M, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6): 633-641. |
84 | Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3968-3973. |
85 | Yang Y, Ding Y, Hu Y, et al. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway[J]. ACS Synthetic Biology, 2015, 4(7): 815-823. |
86 | Jensen H M, Albers A E, Malley K R, et al. Engineering of a synthetic electron conduit in living cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19213-19218. |
87 | Lienemann M, Teravest M A, Pitkanen J P, et al. Towards patterned bioelectronics: facilitated immobilization of exoelectrogenic Escherichia coli with heterologous pili[J]. Microbial Biotechnology, 2018, 11(6): 1184-1194. |
88 | Tan Y, Adhikari R Y, Malvankar N S, et al. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity[J]. Mbio, 2017, 8(1): e02203-16. |
89 | Vargas M, Malvankar N S, Tremblay P L, et al. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens[J]. Mbio, 2013, 4(2): e00210-13. |
90 | Liu X, Wang S, Xu A, et al. Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1535-1544. |
91 | Ueki T, Walker D J F, Tremblay P L, et al. Decorating the outer surface of microbially produced protein nanowires with peptides[J]. ACS Synthetic Biology, 2019, 8(8): 1809-1817. |
[1] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[4] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[5] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[6] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[7] | 刘庆超, 贾辉, 许逸飞, 路娜, 尹延梅, 王捷. 基于FBG力学传感的曝气生物滤池中剪切力分布研究[J]. 化工学报, 2023, 74(4): 1755-1763. |
[8] | 胡阳, 孙彦. 酶分子的自驱动及其介导的微纳马达[J]. 化工学报, 2023, 74(1): 116-132. |
[9] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[10] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[11] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[12] | 安绍杰, 许洪峰, 李思, 许远航, 李佳锡. 利用分子机器的组装与分解构建pH敏感性谷胱甘肽过氧化物人工酶[J]. 化工学报, 2022, 73(8): 3669-3678. |
[13] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[14] | 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶Ⅱ催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211. |
[15] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||