1 |
Wang P, Means N, Shekhawat D, et al. Chemical-looping combustion and gasification of coals and oxygen carrier development: a brief review[J]. Energies, 2015, 8(10): 10605-10635.
|
2 |
Zeng L, Cheng Z, Fan J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364.
|
3 |
Luo S, Zeng L, Fan L. Chemical looping technology: oxygen carrier characteristics[J]. Annual Review of Chemical and Biomolecular Engineering, 2015, 6: 53-75.
|
4 |
史晓斐, 杨思宇, 钱宇. 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69(12): 4931-4946.
|
|
Shi X F, Yang S Y, Qian Y. Chemical looping technology for clean and highly efficient coal processes[J]. CIESC Journal, 2018, 69(12): 4931-4946.
|
5 |
刘永卓, 郭庆杰, 田红景. 煤化学链转化技术研究进展[J]. 化工进展, 2014, 33(6): 1357-1364.
|
|
Liu Y Z, Guo Q J, Tian H J. Research progress of coal chemical chain transformation technology[J]. Chemical Industry and Engineering Process, 2014, 33(6): 1357-1364.
|
6 |
Yu Z, Yang Y, Yang S, et al. Iron-based oxygen carriers in chemical looping conversions: a review[J]. Carbon Resources Conversion, 2019, 2(1): 23-34.
|
7 |
Cheng Z, Qin L, Fan J A, et al. New insight into the development of oxygen carrier materials for chemical looping systems[J]. Engineering, 2018, 4(3): 343-351.
|
8 |
王保文, 赵海波, 郑瑛, 等. 惰性载体Al2O3对Fe2O3及CuO氧载体煤化学链燃烧的影响[J]. 中国电机工程学报, 2011, 31(32): 53-61.
|
|
Wang B W, Zhao H B, Zheng Y, et al. Effect of inert support Al2O3 on the chemical looping combustion of coal with Fe2O3 and CuO-based oxygen carrier[J]. Proceedings of the CSEE, 2011, 31(32): 53-61.
|
9 |
Wang B, Li H, Ding N, et al. Chemical looping combustion characteristics of coal with Fe2O3 oxygen carrier[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(1): 17-27.
|
10 |
程煜, 刘永卓, 田红景, 等. 铁基复合载氧体煤化学链气化反应特性及机理[J]. 化工学报, 2013, 64(7): 2587-2595.
|
|
Chen Y, Liu Y Z, Tian H J, et al. Chemical-looping gasification reaction characteristics and mechanism of coal and Fe-based composite oxygen carrier[J]. CIESC Journal, 2013, 64(7): 2587-2595.
|
11 |
杨明明, 刘永卓, 贾伟华, 等. Fe2O3/ATP载氧体制备及煤化学链燃烧性能研究[J]. 燃料化学学报, 2015, 43(2): 167-176.
|
|
Yang M M, Liu Y Z, Jia W H, et al. Preparation and perfermance of the Fe2O3/ATP oxygen carriers in coal chemical looping combustion[J]. Journal of Fuel Chemistry and Technology, 2015, 43(2): 167-176.
|
12 |
Bhavsar S, Najera M, Veser G. Chemical looping dry reforming as novel, intensified process for CO2 activation[J]. Chemical Engineering & Technology, 2012, 35(7): 1281-1290.
|
13 |
吴宪爽, 何方, 魏国强, 等. 生物炭模板构筑Fe-Ni复合载氧体及其化学链制氢反应性能研究[J]. 燃料化学学报, 2018, 46(4): 500-512.
|
|
Wu X S, He F, Wei G Q, et al. Performance evaluation of Fe-Ni compound oxygen carriers derived from biochar template for chemical looping hydrogen generation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 500-512.
|
14 |
Siriwardane R, Tian H, Fisher J. Production of pure hydrogen and synthesis gas with Cu-Fe oxygen carriers using combined processes of chemical looping combustion and methane decomposition/reforming[J]. International Journal of Hydrogen Energy, 2015, 40(4): 1698-1708.
|
15 |
Liu G, Liao Y, Wu Y, et al. Evaluation of Sr-substituted Ca2Fe2O5 as oxygen carrier in microalgae chemical looping gasification[J]. Fuel Processing Technology, 2019, 191: 93-103.
|
16 |
Liu F, Liu J, Yang Y, et al. A mechanistic study of CO oxidation over spinel MnFe2O4 surface during chemical-looping combustion[J]. Fuel, 2018, 230: 410-417.
|
17 |
Jiang S, Shen L, Wu J, et al. The investigations of hematite-CuO oxygen carrier in chemical looping combustion[J]. Chemical Engineering Journal, 2017, 317: 132-142.
|
18 |
Niu X, Shen L, Jiang S, et al. Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu-Fe oxygen carrier[J]. Chemical Engineering Journal, 2016, 294: 185-192.
|
19 |
Frick V, Rydén M, Leion H. Investigation of Cu-Fe and Mn-Ni oxides as oxygen carriers for chemical-looping combustion[J]. Fuel Processing Technology, 2016, 15: 30-40.
|
20 |
Qin L, Guo M, Liu Y, et al. Enhanced methane conversion in chemical looping partial oxidation systems using a copper doping modification[J]. Applied Catalysis B: Environmental, 2018, 235: 143-149.
|
21 |
te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22 (9): 931-967.
|
22 |
Velde te, Baerends E J. Precise density-functional method for periodic structures[J]. Phys. Rev. B Condens. Matter., 1991, 44(15): 7888-7903.
|
23 |
Pershina V. Relativistic effects on the properties of Lr: a periodic DFT study of the adsorption of Lr on surfaces of Ta in comparison with Lu and Tl[J]. Inorganic Chemistry, 2020, 59(8): 5490-5496.
|
24 |
梁志永, 覃吴, 王建业, 等. 化学链燃烧中基于密度泛函理论的铁基载氧体研究进展[J]. 热能动力工程, 2018, 33(1): 1-5.
|
|
Liang Z Y, Qin W, Wang J Y, et al. Latest advances in the study of the Fe-based oxygen carrier in chemical looping combustion based on the density functional theory[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(1): 1-5.
|
25 |
Lin C, Qin W, Dong C. H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: a DFT study[J]. Applied Surface Science, 2016, 387: 720-731.
|
26 |
Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys. Rev. B Condens. Matter., 1996, 54(23): 16533-16539.
|
27 |
Koblar A, Jackson M R P A. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1991, 46(11): 6671-6687.
|
28 |
Li F, Luo S, Sun Z, et al. Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations[J]. Energy & Environmental Science, 2011, 4(9): 3661-3667.
|
29 |
Henkelman G, Uberuaga B P, Jonsson H, et al. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. Journal of Chemical Physics, 2000, 113(22): 9901-9904.
|
30 |
Dong C, Sheng S, Qin W, et al. Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system[J]. Applied Surface Science, 2011, 257(20): 8647-8652.
|
31 |
Xiao X, Qin W, Wang J, et al. Effect of surface Fe-S hybrid structure on the activity of the perfect and reduced α-Fe2O3(001) for chemical looping combustion[J]. Applied Surface Science, 2018, 440: 29-34.
|
32 |
Lin C, Qin W, Dong C. Reduction effect of α-Fe2O3 on carbon deposition and CO oxidation during chemical-looping combustion[J]. Chemical Engineering Journal, 2016, 301: 257-265.
|
33 |
Zeng D, Qiu Y, Zhang S, et al. Synergistic effects of binary oxygen carriers during chemical looping hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21290-21302.
|