化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5802-5812.DOI: 10.11949/0438-1157.20200273
邓秋金1,2(),宿程远1,2(
),陆欣雅2,关鑫2,覃容华2,邓钰莲2,高澍1,黄尊2
收稿日期:
2020-03-16
修回日期:
2020-05-05
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
宿程远
作者简介:
邓秋金(1995—),女,硕士研究生,基金资助:
DENG Qiujin1,2(),SU Chengyuan1,2(
),LU Xinya2,GUAN Xin2,QIN Ronghua2,DENG Yulian2,GAO Shu1,HUANG Zun2
Received:
2020-03-16
Revised:
2020-05-05
Online:
2020-12-05
Published:
2020-12-05
Contact:
SU Chengyuan
摘要:
探讨了新型生物电化学-颗粒污泥反应器在不同进水氮浓度下的脱氮效能与产电性能,并从颗粒污泥的关键酶活性、胞外聚合物组分以及微生物群落分布等角度系统研究了其影响机制。结果表明,COD、NO3--N、NO2--N和溶解性甲烷在第Ⅰ、Ⅱ、Ⅲ、Ⅳ阶段(进水NO3--N和NO2--N浓度分别为60 mg·L-1和20 mg·L-1、100 mg·L-1和40 mg·L-1、140 mg·L-1和60 mg·L-1、180 mg·L-1和80 mg·L-1)均得以有效去除,其中COD去除率在第Ⅳ阶段效果最佳,去除率达96%以上,NO3--N出水浓度在第Ⅱ阶段更为稳定,其去除率达99%以上,NO2--N去除率在各阶段均达99%以上;该反应器最大的功率密度与输出电压值为第Ⅳ阶段的4号格室,分别为471.2 mV·m-3和608.1 mV。污泥疏松型胞外聚合物(LB-EPS)中多糖与蛋白含量最高为第Ⅱ阶段的5号格室,分别为13.7 mg·g-1和14.7 mg·g-1;1号格室污泥中辅酶F420活性最低,进水氮浓度的增大提高了污泥中蛋白酶活性。由第Ⅰ阶段至第Ⅳ阶段,该反应器中变形菌门(Protebaoteria)相对丰度减少,而绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)和浮霉菌门(Planctomycetes)相对丰度增加;具有脱氮作用的陶厄氏菌属(Thauera)在1号格室减少了8.64%,但该反应器脱氮效果未受到影响;甲烷丝状菌属(Methanothrix)在4号格室相对丰度增至12.3%,表明产甲烷菌可在该反应器中与其他菌群联营共存。
中图分类号:
邓秋金,宿程远,陆欣雅,关鑫,覃容华,邓钰莲,高澍,黄尊. 氮浓度对新型生物电化学-颗粒污泥反应器运行的影响[J]. 化工学报, 2020, 71(12): 5802-5812.
DENG Qiujin,SU Chengyuan,LU Xinya,GUAN Xin,QIN Ronghua,DENG Yulian,GAO Shu,HUANG Zun. Influence of nitrogen concentration on operation of a novel bio-electrochemical-granular sludge reactor[J]. CIESC Journal, 2020, 71(12): 5802-5812.
18 | 史政. 多参数泵吸式检测仪的设计[J]. 电子测试, 2013, (7): 10-11. |
Shi Z. Design of multi-parameter pump-type detector [J]. Electronic Testing, 2013, (7): 10-11. | |
19 | Mu H, Chen Y G, Xiao N D, et al. Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2011, 102: 10305-10311. |
20 | Guo X L, Gu J, Gao H, et al. Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting[J]. Bioresource Technology, 2012, 108: 140-148. |
21 | Dong B, Xi, Z H, Sun J, et al. The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion [J]. Science of the Total Environment, 2019, 646: 1376-1384. |
22 | 周俊, 周立祥, 黄焕忠. 污泥胞外聚合物的提取方法及其对污泥脱水性能的影响[J]. 环境科学, 2013, 34(7): 2752-2757. |
Zhou J, Zhou L X, Huang H Z. Optimization of extracellular polymeric substance extraction method and its role in the dewaterability of sludge [J]. Environmental Science, 2013, 34(7): 2752-2757. | |
23 | 徐铭含. 好氧颗粒污泥系统在变温过程中胞外聚合物变化规律[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
Xu M H. Changes of extracellular polymer in aerobic granular sludge system in the process of temperature change [D]. Harbin: Harbin Institute of Technology, 2019. | |
24 | Wang K, Mao H, Wang Z, et al. Succession of organics metabolic function of bacterial community in swine manure composting [J]. Journal of Hazardous Materials, 2018, 360: 471-480. |
25 | Ettwig K F, Alen T V, Pas-Schoonen K T V D, et al. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum [J]. Application Environment Microbiology, 2009, 75: 3656–3662. |
26 | Ettwig K F, Butler M K, Paslier D L, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464: 543-548. |
1 | Huang H, Cheng S, Li F, et al. Enhancement of the denitrification activity by exoelectrogens in single-chamber air cathode microbial fuel cells [J]. Chemosphere, 2019, 225: 548-556. |
2 | Mook W T, Chakrabarti M H, Aroua M K, et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review [J]. Desalination, 2012, 285: 1-13. |
27 | Zhu Y, Zhu R, Xi Y, et al. Heterogeneous photo-Fenton degradation of bisphenol A over Ag/AgCl/ferrihydrite catalysts under visible light[J]. Chemical Engineering Journal, 2018, 346: 567-577. |
28 | 杨祖洁. 基于厌氧甲烷氧化的微生物燃料电池产电性能研究[D]. 福州: 福建农林大学, 2019. |
Yang Z J. Research on the electrical performance of microbial fuel cells based on anaerobic methane oxidation [D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. | |
29 | Chen S M, Smith A L. Performance and microbial ecology of methane-driven microbial fuel cells at temperatures ranging from 25 to 5℃ [J]. Water Research, 2019, 166: 115036. |
30 | 杨金萍, 汪家权, 陈少华, 等. 双室微生物燃料电池处理硝酸盐废水[J]. 环境工程学报, 2013, 7(5): 1838-1842. |
Yang J P, Wang J Q, Chen S H, et al. Two-compartment microbial fuel cell treatment of nitrate wastewater [J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1838-1842. | |
31 | Liu R, Zheng X Y, Li M, et al. A three chamber bioelectrochemical system appropriate for in-situ remediation of nitrate-contaminated groundwater and its reaction mechanisms [J]. Water Research, 2019, 158: 410. |
32 | 毛春兰. 小麦秸秆与猪粪混合物料厌氧发酵特征及微生物调控机制研究[D]. 杨凌: 西北农林科技大学, 2018. |
Mao C L. Study on characteristics of anaerobic fermentation of wheat straw and pig manure mixture and microbiological regulation mechanism [D]. Yangling: North West Agriculture and Forestry University, 2018. | |
33 | 靖玉明, 张建, 张成禄, 等. 人工湿地中脱氢酶活性及其与污染物去除之间的相关性研究[J]. 环境工程, 2008, (1): 95-96. |
Jing Y M, Zhang J, Zhang C L, et al. Study on the correlation between dehydrogenase activity and pollutant removal in constructed wetland [J]. Environmental Engineering, 2008, (1): 95-96. | |
34 | Miao H, Lu M, Zhao M, et al. Enhancement of Taihu blue algae anaerobic digestion efficiency by natural storage[J]. Bioresource Technology, 2013, 149: 359-366. |
35 | 颜炳坤. 联合葡萄糖激酶与乙酸激酶催化的ATP再生系统酶法合成葡萄糖-6-磷酸[D]. 上海: 华东理工大学, 2014. |
Yan B K. Synthesis of glucose-6-phosphoric acid by ATP regeneration system enzymatic method catalyzed by gluconase and acetate kinase [D]. Shanghai: East China University of Science and Technology, 2014. | |
36 | 李雪, 蔡丹, 沈月, 等. 微生物来源蛋白酶的研究进展[J]. 食品科技, 2019, 44(1): 37-41. |
Li X, Cai D, Shen Y, et al. Research progress of microbial protease [J]. Food Science and Technology, 2019, 44(1): 37-41. | |
37 | Kong Z, Li L, Li Y, et al. Characterization and variation of microbial community structure during the anaerobic treatment of N, N-dimethylformamide-containing wastewater by UASB with artificially mixed consortium [J]. Bioresource Technology. 2018, 268: 434-444. |
38 | 王宇佳. 亚硝化过程控制与厌氧氨氧化工艺运行及其微生物特性[D]. 沈阳: 东北大学, 2017. |
Wang Y J. Nitritation process control and Anammox process performance and their microbial characteristics[D]. Shenyang: Northeastern University, 2017. | |
39 | 廖润华. 胁迫条件下EGSB反应器处理高硝态氮废水及其微生物群落与功能研究[D]. 南京: 南京大学, 2014. |
Liao R H. Research on microbial communities, function and performances for high nitrate nitrogen wastewater treatment in an EGSB reactor under stress conditions [D]. Nanjing: Nanjing University, 2014. | |
40 | 汪瑶琪, 张敏, 姜滢, 等. 厌氧氨氧化启动过程及微生物群落结构特征[J]. 环境科学, 2017, 38(12): 5184-5191. |
Wang Y Q, Zhang M, Jiang Y, et al. Anammox initiation process and microbial community structure characteristics [J]. Environmental Science, 2017, 38(12): 5184-5191. | |
41 | Sun H, Xu S, Wu S, et al. Enhancement of facultative anaerobic denitrifying communities by oxygen release from roots of the macrophyte in constructed wetlands[J]. Journal of Environment Management, 2019, 246: 157-163. |
42 | Yang N, Zhan G, Li D, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell[J]. Chemical Engineering Journal, 2019, 356: 506-515. |
43 | Huang H B, Cheng S A, Yang J W, et al. Effect of nitrate on electricity generation in single-chamber air cathode microbial fuel cells [J]. Chemical Engineering Journal, 2017, 337: 661-670. |
3 | Anthony J S, Kathryn A W, Dale A C B, et al. Microbial fuel cells: an overview of current technology [J]. Renewable and Sustainable Energy Reviews, 2019, 101: 60-81. |
4 | 杨政伟, 顾莹莹, 赵朝成, 等. 土壤微生物燃料电池的研究进展及展望[J]. 化工学报, 2017, 68(11): 3995-4004. |
Yang Z W, Gu Y Y, Zhao C C, et al. Research progress and prospect of soil microbial fuel cells [J]. CIESC Journal, 2017, 68(11): 3995-4004. | |
5 | Jin X J, Guo F, Ma W Q, et al. Heterotrophic anodic denitrification improves carbon removal and electricity recovery efficiency in microbial fuel cells [J]. Chemical Engineering Journal, 2019, 370: 527-535. |
6 | Cheng K, Hu J P, Hou H J, et al. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment [J]. Bioresource Technology, 2017, 229: 126-133. |
7 | 江丽珍, 刘江, 向兴, 等. 氮依赖型甲烷厌氧氧化菌的整合[J]. 微生物学报, 2018, 58(8): 1407-1419. |
Jiang L Z, Liu J, Xiang X, et al. Integrated analysis of nitrite-dependent anaerobic methane oxidation bacteria [J]. Acta Microbiologica Sinica, 2018, 58(8): 1407-1419. | |
8 | Su J, Hu C, Yan X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice [J]. Nature, 2015, 523: 602-606. |
9 | 何崭飞. 亚硝酸盐型甲烷厌氧氧化细菌培养条件优化及其生态功能[D]. 杭州: 浙江大学, 2016. |
He Z F. Optimization of culture conditions and ecological functions of anaerobic bacteria with nitrite type methane [D]. Hangzhou: Zhejiang University, 2016. | |
10 | Hu B L, Shen L D, Lian X, et al. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J]. Proceedings of the National Academy of Sciences, 2014, 111: 4495-4500. |
11 | Kampman C, Hendrickx T L G, Luesken F A, et al. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment[J]. Journal of Hazardous Materials, 2012, 227/228: 164-171. |
12 | Hatamoto M, Sato T, Nemoto S. Cultivation of denitrifying anaerobic methane-oxidizing microorganisms in a continuous-flow sponge bioreactor [J]. Applied Microbiology and Biotechnology, 2017, 101: 5881-5888. |
13 | Ding J, Lu Y Z, Fu L, et al. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell [J]. Water Research, 2017, 110: 112-119. |
14 | Fu L, Zhang F, Bai Y N, et al. Mass transfer affects reactor performance, microbial morphology, and community succession in the methane-dependent denitrification and anaerobic ammonium oxidation co-culture [J]. Science of the Total Environment, 2019, 651: 291-297. |
15 | 尤世界. 微生物燃料电池处理有机废水过程中的产电特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. |
You S J. Research on power generation characteristics of microbial fuel cell in treating organic wastewater [D]. Harbin: Harbin Institute of Technology, 2008. | |
16 | 岳学海, 孔维芳, 王许云, 等. 厌氧流化床微生物燃料电池空气阴极研究[J]. 化工学报, 2013, 64(1): 352-356. |
Yue X H, Kong W F, Wang X Y, et al. Research on air-cathode of anaerobic fluidized bed microbial fuel cell [J]. CIESC Journal, 2013, 64(1): 352-356. | |
17 | Cai C, Hu S, Guo J, et al. Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate [J]. Water Research, 2015, 87: 211-217. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[4] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[5] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[6] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[7] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[8] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[9] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[10] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[11] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[12] | 胡南, 陶德敏, 杨照岚, 王学兵, 张向旭, 刘玉龙, 丁德馨. 铁炭微电解与硫酸盐还原菌耦合修复铀尾矿库渗滤水的研究[J]. 化工学报, 2023, 74(6): 2655-2667. |
[13] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[14] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[15] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 318
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 434
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||