化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3042-3049.DOI: 10.11949/0438-1157.20200109
收稿日期:
2020-02-03
修回日期:
2020-04-10
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
王科
作者简介:
吴鹏飞(1996—),男,硕士研究生,基金资助:
Pengfei WU(),Ke WANG(),Jue ZHAO
Received:
2020-02-03
Revised:
2020-04-10
Online:
2020-07-05
Published:
2020-07-05
Contact:
Ke WANG
摘要:
实验研究了板壳式换热器波纹通道内垂直向上气-液两相流动的流型和压降特性,讨论了圆形波纹通道内流型特征及转变机理,根据相界面形态特征将流型划分为泡状流、弹状流、膜状流和搅混流;同时分析了流型与压降之间的关系,发现泡状流中的压降波动幅值最小,弹状流与膜状流次之,搅混流中压降波动幅值最大;获得了波纹通道内单相以及气-液两相压降的分布规律,拟合了单相压降关联式,并基于Lockhart-Martinelli理论,通过分析两相摩阻系数与Martinelli参数的关系拟合了波纹通道内两相流动压降关联式,发现Chisholm参数C的值与Chisholm最初建议的光滑管内层流-层流的值接近。
中图分类号:
吴鹏飞, 王科, 赵珏. 绝热状态下板壳式换热器壳侧的流型与压降[J]. 化工学报, 2020, 71(7): 3042-3049.
Pengfei WU, Ke WANG, Jue ZHAO. Flow pattern and pressure drop on shell side of shell and plate heat exchanger under adiabatic state[J]. CIESC Journal, 2020, 71(7): 3042-3049.
板片直径D/mm | 角孔直径d/mm | 表面扩张因子 | 波纹节距Pc/mm | 角孔距离LP/mm | 波纹夹角φ/(°) | 波纹高度b/mm | 水力直径Dh/mm |
---|---|---|---|---|---|---|---|
454 | 80 | 1.16 | 8.8 | 344 | 75 | 2.2 | 4.4 |
表1 板片参数
Table1 Plate parameters
板片直径D/mm | 角孔直径d/mm | 表面扩张因子 | 波纹节距Pc/mm | 角孔距离LP/mm | 波纹夹角φ/(°) | 波纹高度b/mm | 水力直径Dh/mm |
---|---|---|---|---|---|---|---|
454 | 80 | 1.16 | 8.8 | 344 | 75 | 2.2 | 4.4 |
1 | 蔡丽萍, 郭国义, 陈定岳, 等. 板壳式换热器的应用和进展[J]. 化工装备技术, 2011, 32(2): 27-31. |
Cai L P, Guo G Y, Chen D Y, et al. Application and progress of shell and plate heat exchangers[J]. Chemical Equipment Technology, 2011, 32(2): 27-31. | |
2 | 魏兆藩, 王丕宏, 张延丰, 等. 大型板壳式换热器研制[J]. 石油化工设备, 2000, 29(4): 26-29. |
Wei Z F, Wang P H, Zhang Y F, et al. Development of large shell and plate heat exchanger[J]. Petrochemical Equipment, 2000, 29(4): 26-29. | |
3 | 王佳卓, 阎昌琪, 丁铭, 等. 高压圆形板壳式换热器的设计与研究[J]. 核动力工程, 2014, (2): 141-145. |
Wang J Z, Yan C Q, Ding M, et al. Design and research of high-pressure circular shell and plate heat exchanger[J]. Nuclear Power Engineering, 2014, (2): 141-145. | |
4 | 侯霄艳, 常春梅, 张向南, 等. 圆形板片板壳式热交换器结构及特性分析[J]. 石油化工设备, 2015, 44(s1): 16-19. |
Hou X Y, Chang C M, Zhang X N, et al. Structure and characteristics analysis of circular shell and plate heat exchanger[J]. Petrochemical Equipment, 2015, 44(s1): 16-19. | |
5 | Focke W W, Knibbe P G. Flow visualization in parallel-plate ducts with corrugated walls[J]. Journal of Fluid Mechanics, 1986, 165: 73-77. |
6 | Dović D, Palm B, Švaić S. Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry[J]. International Journal of Heat and Mass Transfer, 2009, 52(19/20): 4553-4563. |
7 | Zimmerer C, Gschwind P, Gaiser G, et al. Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls[J]. Experimental Thermal and Fluid Science, 2002, 26(2/3/4): 269-273. |
8 | 栾志坚, 张冠敏, 张俊龙, 等. 波纹几何参数对人字形板式换热器内流动形态的影响机理[J]. 山东大学学报, 2007, 37(2): 34-37. |
Luan Z J, Zhang G M, Zhang J L, et al. The influence mechanism of corrugated geometric parameters on the flow morphology in a chevron plate heat exchanger[J]. Journal of Shandong University, 2007, 37(2): 34-37. | |
9 | Zhu X, Haglind F. Computational fluid dynamics modeling of liquid-gas flow patterns and hydraulics in the cross-corrugated channel of a plate heat exchanger[J]. International Journal of Multiphase Flow, 2020, 122: 103163. |
10 | Lee D C, Kim D, Yun S, et al. Two-phase flow patterns and pressure drop of a low GWP refrigerant R-1234ze (E) in a plate heat exchanger under adiabatic conditions[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118816. |
11 | Kim H J, Liebenberg L, Jacobi A M. Flow visualization of two-phase R-245fa at low mass flux in a plate heat exchanger near the micro-macroscale transition[J]. Science and Technology for the Built Environment, 2019, 25(10): 1292-1301. |
12 | Jiang C, Bai B. Flow patterns and pressure drop of downward two-phase flow in a capsule-type plate heat exchanger[J]. Experimental Thermal and Fluid Science, 2019, 103: 347-354. |
13 | Nilpueng K, Wongwises S. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels[J]. Experimental Thermal and Fluid Science, 2006, 30(6): 523-534. |
14 | Nilpueng K, Wongwises S. Two-phase gas-liquid flow characteristics inside a plate heat exchanger[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1217-1229. |
15 | Tribbe C, Müller-Steinhagen H M. Gas-liquid flow in plate-and-frame heat exchangers (Ⅱ): Two-phase multiplier and flow pattern analysis[J]. Heat Transfer Engineering, 2001, 22(1): 12-21. |
16 | Jin S. A new experimental approach of characterizing two-phase flow and heat transfer in plate heat exchangers[D]. Illinois, United States: University of Illinois at Urbana-Champaign, 2017. |
17 | Jin S, Hrnjak P. A new method to simultaneously measure local heat transfer and visualize flow boiling in plate heat exchanger[J]. International Journal of Heat and Mass Transfer, 2017, 113: 635-646. |
18 | Jassim E W, Newell T A, Chato J C. Refrigerant pressure drop in chevron and bumpy style flat plate heat exchangers[J]. Experimental Thermal and Fluid Science, 2006, 30(3): 213-222. |
19 | Longo G A, Gasparella A. HFC-410A vaporisation inside a commercial brazed plate heat exchanger[J]. Experimental Thermal and Fluid Science, 2007, 32(1): 107-116. |
20 | Thonon B, Vidil R, Marvillet C. Recent research and developments in plate heat exchangers[J]. Fuel & Energy Abstracts, 1995, 36(5): 361-361. |
21 | Amalfi R L, Vakili-Farahani F, Thome J R. Flow boiling and frictional pressure gradients in plate heat exchangers (Ⅰ): Review and experimental database[J]. International Journal of Refrigeration, 2016, 61: 166-184. |
22 | Lee J, Lee K S. Friction and Colburn factor correlations and shape optimization of chevron-type plate heat exchangers[J]. Applied Thermal Engineering, 2015, 89: 62-69. |
23 | Grabenstein V, Kabelac S. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger[J]. Journal of Physics Conference, 2012, 395: 012169. |
24 | Táboas F, Vallès M, Bourouis M, et al. Flow boiling heat transfer of ammonia/water mixture in a plate heat exchanger[J]. International Journal of Refrigeration, 2010, 33(4): 695-705. |
25 | Li X, Meng J, Li Z. An experimental study of the flow and heat transfer between enhanced heat transfer plates for PHEs[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1194-1204. |
26 | Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1): 39-48. |
27 | Abbas A, Lee H, Sengupta A, et al. Numerical investigation of thermal and hydraulic performance of shell and plate heat exchanger[J]. Applied Thermal Engineering, 2020, 167: 114705. |
28 | 陈武滨, 江楠. 新型板壳式换热器壳程流动与换热的数值模拟[J]. 化学工程, 2012, (1): 37-41. |
Chen W B, Jiang N. Numerical simulation of shell-side flow and heat transfer of a new shell and plate heat exchanger [J]. Chemical Engineering (China), 2012, (1): 37-41. | |
29 | Focke W W, Zachariades J, Olivier I. The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers[J]. International Journal of Heat and Mass Transfer, 1985, 28(8): 1469-1479. |
30 | Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778. |
31 | Margat L, Thonon B, Tadrist L. Heat transfer and two-phase flow characteristics during convective boiling in a corrugated channel[C]// Compact Heat Exchangers for the Process Industry. New York: Bege//House, Ine, 1997: 323-329. |
32 | Shiomi Y, Nakanishi S, Uehara T. Characteristics of two-phase flow in a channel formed by chevron type plates[J]. Experimental Thermal and Fluid Science, 2004, 28(2/3): 231-235. |
33 | Claesson J. Thermal and hydraulic performance of compact brazed plate heat exchangers operating as evaporators in domestic heat pumps[D]. Sweden: KTH Royal Institute of Technology, 2005. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[3] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[4] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[5] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[6] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[7] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[8] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[9] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[10] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[11] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[12] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[13] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[14] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
[15] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||