化工学报 ›› 2020, Vol. 71 ›› Issue (11): 4999-5006.DOI: 10.11949/0438-1157.20200778
收稿日期:
2020-06-20
修回日期:
2020-07-13
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
杨国强
作者简介:
曾伟(1995—),男,硕士研究生,基金资助:
Wei ZENG(),Jia LIU,Dejin ZHANG,Guoqiang YANG(),Zhibing ZHANG
Received:
2020-06-20
Revised:
2020-07-13
Online:
2020-11-05
Published:
2020-11-05
Contact:
Guoqiang YANG
摘要:
使用沉淀沉积法及溶液浸渍法分别将Au和Pd纳米粒子负载在原子层沉积法制备的1cTiO2/SiO2载体上,制备出两种不同Pd负载量的Pd-Au双金属活性中心纳米催化剂。采用TEM、EDX、XPS对所制备的催化剂进行了详细的表征,确定了纳米粒子的形貌、Pd-Au元素的化学价态和组成。测试了该类催化剂在以氧气为氧源的环己烯环氧化反应中的活性和选择性,并对反应溶剂、共还原剂种类、反应温度等条件进行了筛选。在优化后的反应条件下考察了该催化剂对不同结构烯烃的适用性。对于环状烯烃,底物转化率均大于95%,环氧产物选择性均大于91%。催化剂在循环回收5次后,催化活性和反应选择性保持不变。
中图分类号:
曾伟,刘甲,张德谨,杨国强,张志炳. Pd-Au/1cTiO2/SiO2催化剂的制备及其烯烃的环氧化性能[J]. 化工学报, 2020, 71(11): 4999-5006.
Wei ZENG,Jia LIU,Dejin ZHANG,Guoqiang YANG,Zhibing ZHANG. Preparation of catalyst Pd-Au/1cTiO2/SiO2 and epoxidation of olefins[J]. CIESC Journal, 2020, 71(11): 4999-5006.
底物 | 反应时间/h | 底物 转化率/% | 环氧化产物 选择性/% |
---|---|---|---|
环戊烯 | 3 | 99 | 97 |
环辛烯 | 4 | 96 | 95 |
1-甲基-1-环己烯 | 4 | 98 | 91 |
降冰片烯 | 4 | 98 | 96 |
α-蒎烯 | 6 | 98 | 96 |
2,3-二甲基-2-丁烯 | 10 | 52 | 96 |
1-己烯① | 10 | 48 | 98 |
1-辛烯① | 10 | 39 | 97 |
1-十二烯① | 10 | 35 | 98 |
苯乙烯① | 8 | 83 | 91 |
表1 不同烯烃的环氧化反应
Table 1 Epoxidation of different olefins catalyzed by Pd-Au catalyst
底物 | 反应时间/h | 底物 转化率/% | 环氧化产物 选择性/% |
---|---|---|---|
环戊烯 | 3 | 99 | 97 |
环辛烯 | 4 | 96 | 95 |
1-甲基-1-环己烯 | 4 | 98 | 91 |
降冰片烯 | 4 | 98 | 96 |
α-蒎烯 | 6 | 98 | 96 |
2,3-二甲基-2-丁烯 | 10 | 52 | 96 |
1-己烯① | 10 | 48 | 98 |
1-辛烯① | 10 | 39 | 97 |
1-十二烯① | 10 | 35 | 98 |
苯乙烯① | 8 | 83 | 91 |
1 | Lane B S, Burgess K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide[J]. Chemical Reviews, 2003, 103(7): 2457-2473. |
2 | Vaughan O P H, Kyriakou G, Macleod N, et al. Copper as a selective catalyst for the epoxidation of propene[J]. Journal of Catalysis, 2005, 236(2): 401-404. |
3 | Blanckenberg A, Malgas-Enus R. Olefin epoxidation with metal-based nanocatalysts[J]. Catalysis Reviews, 2019, 61(1): 27-83. |
4 | Andrus M B, Poehlein B W. Epoxidation of olefins with peracid at low temperature with copper catalysis[J]. Tetrahedron Letters, 2000, 41(7): 1013-1014. |
5 | Woods K W, Beak P. The endocyclic restriction test: an experimental evaluation of the geometry at oxygen in the transition structure for epoxidation of an alkene by a peroxy acid[J]. Journal of the American Chemical Society, 1991, 113(16): 6281-6283. |
6 | Sharpless K B, Michaelson R C. High stereo- and regioselectivities in the transition metal catalyzed epoxidations of olefinic alcohols by tert-butyl hydroperoxide[J]. Journal of the American Chemical Society, 1973, 95(18): 6136-6137. |
7 | Banerjee D, Jagadeesh R V, Junge K, et al. Convenient and mild epoxidation of alkenes using heterogeneous cobalt oxide catalysts[J]. Angewandte Chemie International Edition, 2014, 53(17): 4359-4363. |
8 | Wang C, Yamamoto H. Tungsten-catalyzed asymmetric epoxidation of allylic and homoallylic alcohols with hydrogen peroxide[J]. Journal of the American Chemical Society, 2014, 136(4): 1222-1225. |
9 | Kamata K, Yonehara K, Sumida Y, et al. Efficient epoxidation of olefins with ≥99% selectivity and use of hydrogen peroxide[J]. Science, 2003, 300(5621): 964-966. |
10 | Zhou M D, Liu M J, Huang L L, et al. Olefin epoxidation with hydrogen peroxide using octamolybdate-based self-separating catalysts[J]. Green Chemistry, 2015, 17(2): 1186-1193. |
11 | 刘颖, 刘甲, 杨国强, 等. 相转移催化H2O2氧化环己烯合成环氧环己烷的工艺研究[J]. 南京大学学报, 2019, 55(5): 850-858. |
Liu Y, Liu J, Yang G Q, et al. Study on phase transfer catalytic synthesis of epoxycyclohexene by H2O2 oxidation of cyclohexene[J]. Journal of Nanjing University, 2019, 55(5): 850-858. | |
12 | Yang G Q, Huff M D, Du H Y, et al. Increased selectivity for allylic oxidation of cyclohexene using TiO2 modified V2O5/MoO3 catalysts[J]. Catalysis Communications, 2017, 99: 43-48. |
13 | Ji L, Wang Y N, Qian C, et al. Nitrile-promoted alkene epoxidation with urea–hydrogen peroxide (UHP)[J]. Synthetic Communications, 2013, 43(16): 2256-2264. |
14 | 马晓雪, 梁坤豪, 魏杰, 等. 醚基高铼酸盐离子液体的催化性能研究[J]. 化工学报, 2020, 71(1): 314-319. |
Ma X X, Liang K H, Wei J, et al. Study on catalytic properties of novel ether-based peerhenate ionic liquids[J]. CIESC Journal, 2020, 71(1): 314-319. | |
15 | Yang G Q, Du H Y, Liu J, et al. Oxidation of olefins using molecular oxygen catalyzed by a part per million level of recyclable copper catalyst under mild conditions[J]. Green Chemistry, 2017, 19(3): 675-681. |
16 | Dou J, Tang Y, Nguyen L, et al. Oxidation of cyclohexene catalyzed by nanoporous Au(Ag) in liquid phase[J]. Catalysis Letters, 2017, 147(2): 442-452. |
17 | Zhu Y, Qian H, Drake B, et al. Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α,β-unsaturated ketones and aldehydes[J]. Angewandte Chemie International Edition, 2010, 49(7): 1295-1298. |
18 | Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts[J]. Science, 2003, 301(5635): 935-938. |
19 | Wang L, Wang H, Hapala P, et al. Superior catalytic properties in aerobic oxidation of olefins over Au nanoparticles on pyrrolidone-modified SBA-15[J]. Journal of Catalysis, 2011, 281(1): 30-39. |
20 | Gniewek A, Trzeciak A M, Ziółkowski J J, et al. Pd-PVP colloid as catalyst for Heck and carbonylation reactions: TEM and XPS studies[J]. Journal of Catalysis, 2005, 229(2): 332-343. |
21 | Liu H, Jiang T, Han B, et al. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst[J]. Science, 2009, 326(5957): 1250-1252. |
22 | Enache D I, Edwards J K, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts[J]. Science, 2006, 311(5759): 362-365. |
23 | Gao F, Goodman D W. Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles[J]. Chemical Society Reviews, 2012, 41(24): 8009-8020. |
24 | Nomura Y, Ishihara T, Hata Y, et al. Nanocolloidal Pd-Au as catalyst for the direct synthesis of hydrogen peroxide from H2 and O2[J]. ChemSusChem, 2008, 1(7): 619-621. |
25 | Pritchard J, Kesavan L, Piccinini M, et al. Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au-Pd catalysts prepared by sol immobilization[J]. Langmuir, 2010, 26(21): 16568-16577. |
26 | Du J, Qi J, Wang D, et al. Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency[J]. Energy & Environmental Science, 2012, 5(5): 6914-6918. |
27 | Park J Y, Lee H, Renzas J R, et al. Probing hot electron flow generated on Pt nanoparticles with Au/TiO2 Schottky diodes during catalytic CO oxidation[J]. Nano Letters, 2008, 8(8): 2388-2392. |
28 | Furube A, Du L, Hara K, et al. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2007, 129(48): 14852-14853. |
29 | Hadian D L, Hosseini M H. Enantioselective aerobic oxidation of olefins by magnetite nanoparticles at room temperature: a chiral carboxylic acid strategy[J]. Green Chemistry, 2016, 18(2): 497-507. |
30 | Liu Y Y, Leus K, Bogaerts T, et al. Bimetallic-organic framework as a zero-leaching catalyst in the aerobic oxidation of cyclohexene[J]. ChemCatChem, 2013, 5(12): 3657-3664. |
31 | Serra A C, Rocha G, António M. Mild oxygen activation with isobutyraldehyde promoted by simple salts[J]. Tetrahedron Letters, 2011, 52(27): 3489-3491. |
32 | Payne G B, Deming P H, Williams P H. Reactions of hydrogen peroxide(Ⅶ): Alkali-catalyzed epoxidation and oxidation using a nitrile as co-reactant[J]. The Journal of Organic Chemistry, 1961, 26(3): 659-663. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[7] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[11] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[12] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[13] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[14] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[15] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||