化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5636-5643.DOI: 10.11949/0438-1157.20200623
贺亚维1,2(),张颂红2,黄杰2,刘流2,李国华2,贠军贤2()
收稿日期:
2020-05-21
修回日期:
2020-07-07
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
贠军贤
作者简介:
贺亚维(1973—),女,硕士,副教授,基金资助:
HE Yawei1,2(),ZHANG Songhong2,HUANG Jie2,LIU Liu2,LI Guohua2,YUN Junxian2()
Received:
2020-05-21
Revised:
2020-07-07
Online:
2020-12-05
Published:
2020-12-05
Contact:
YUN Junxian
摘要:
采用超声乳化聚合法制备了聚甲基丙烯酸丁酯纳凝胶,然后经结晶致孔法制备了内嵌纳凝胶的甲基丙烯酸羟乙酯纳晶胶,对其接枝功能单体N,N,N-三甲基乙烯基苯甲氯化铵,得到内嵌纳凝胶阴离子交换纳晶胶,用于从发酵液中分离苯乳酸。结果表明:所得纳晶胶具有良好的渗透性能和轴向分散性能,在流速为1 cm·min-1时,不同配比纳晶胶对牛血清白蛋白的吸附容量为3.9~5.4 mg·ml-1;将质量比为 8∶2(HEMA∶pBMA)的纳晶胶用于从转化液中分离苯乳酸,所得苯乳酸的纯度达89.24%,回收率93.74%,分离效果好,表明其在生物分离方面有良好的应用前景。
中图分类号:
贺亚维,张颂红,黄杰,刘流,李国华,贠军贤. 内嵌纳凝胶阴离子交换聚甲基丙烯酸羟乙酯复合晶胶分离苯乳酸研究[J]. 化工学报, 2020, 71(12): 5636-5643.
HE Yawei,ZHANG Songhong,HUANG Jie,LIU Liu,LI Guohua,YUN Junxian. Separation of phenyllactic acid from transformation broth by anion exchange poly(2-hydroxyethyl methacrylate) composite cryogel embedded with nanogels[J]. CIESC Journal, 2020, 71(12): 5636-5643.
Mass ratios of HEMA to pBMA nanogels | The effective porosity/% | The absolute porosity /% |
---|---|---|
9:1 | 82.5 | 88.0 |
8:2 | 81.2 | 88.8 |
7:3 | 79.5 | 84.9 |
表1 纳晶胶介质孔隙率
Table 1 The porosities of nano-cryogels
Mass ratios of HEMA to pBMA nanogels | The effective porosity/% | The absolute porosity /% |
---|---|---|
9:1 | 82.5 | 88.0 |
8:2 | 81.2 | 88.8 |
7:3 | 79.5 | 84.9 |
Mass ratios of HEMA to pBMA nanogels | L/cm | kw×1012/m2 |
---|---|---|
9:1 | 5.0 | 1.77 |
8:2 | 4.7 | 1.26 |
7:3 | 5.2 | 0.35 |
表2 不同配比的纳晶胶长度和渗透率
Table 2 Permeability and length of the composite cryogel matrix with different mass ratios of HEMA to pBMA nanogels (column inner diameter: 10 mm)
Mass ratios of HEMA to pBMA nanogels | L/cm | kw×1012/m2 |
---|---|---|
9:1 | 5.0 | 1.77 |
8:2 | 4.7 | 1.26 |
7:3 | 5.2 | 0.35 |
图9 层析转化过程中不同阶段流出液的HPLC图
Fig.9 HPLC results of PLA and other contamination contents in the effluent sample for the chromatography process of sample solution
1 | Dieuleveux V, van der Pyl D, Chataud J, et al. Purification and characterization of anti-Listeria compounds produced by Geotrichum candidum[J]. Applied Environmental Microbiology, 1998, 64(2): 800-803. |
2 | Schwenninger S M, Lacroix C, Truttmann S, et al. Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture[J]. Journal of Food Protection, 2008, 71(12): 2481-2487. |
3 | Prema P, Smila D, Palavesam A, et al. Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain[J]. Food and Bioprocess Technology, 2010, 3(3): 379-386. |
4 | Mu W M, Yu S H, Zhu L J, et al. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound[J]. Applied Microbiology Biotechnology, 2012, 95(5): 1155-1163. |
5 | Li L, Shin S Y, Lee K W, et al. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC8293 whole cells involving highly active D-lactate dehydrogenase[J]. Letters Applied Microbiology, 2014, 59(4): 404-411. |
6 | Ning Y W, Yan A H, Yang K, et al. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms[J]. Food Chemistry, 2017, 228: 533-540. |
7 | Fujita T, Nguyen H D, Ito T, et al. Microbial monomers custom-synthesized to build true bio-derived aromatic polymers[J]. Applied Microbiology and Biotechnology, 2013, 97(20): 8887-8894. |
8 | Valerio F, Di Blase M, Lattanzio V M, et al. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of PLA[J]. International Journal of Food Microbiology, 2016, 222: 1-7. |
9 | 朱银龙, 贠军贤, 沈绍传, 等. 透性化干酪乳杆菌细胞转化苯丙酮酸合成苯乳酸[J]. 高校化学工程学报, 2015, 29(2): 495-500. |
Zhu Y L, Yun J X, Shen S C, et al. Biotransformation of phenylpyruvic acid into phenyllactic acid with permeabilized Lactobacillus casei cells [J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(2): 495-500. | |
10 | Rodríguez N, Salgado J M, Cortés S, et al. Antimicrobial activity of D-3-phenyllactic acid produced by fed-batch process against Salmonella enteric[J]. Food Control, 2012, 25(1): 274-284. |
11 | Li X F, Jiang B, Pan B L. Biotransformation of phenylpyruvic acid to phenyllactic acid by growing and resting cells of a Lactobacillus sp[J]. Biotechnology Letters, 2007, 29(4): 593-597. |
12 | 倪正, 关今韬, 沈绍传, 等. 苯乳酸的微生物合成及分离研究进展[J]. 化工进展, 2016, 35(11): 3627-3633. |
Ni Z, Guan J T, Shen S C. An overview of recent advances in microbial synthesis and separation of phenyllactic acid[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3627-3633. | |
13 | Gizem E, Bo M. Cryogels-versatile tools in bioseparation[J]. Journal of Chromatography A, 2014, 1357(8): 24-35. |
14 | Lozinsky V I, Galaev I Y, Plieva F M, et al. Polymeric cryogels as promising materials of biotechnological interest[J]. Trends in Biotechnology, 2003, 21(10): 445-451. |
15 | Plieva F M , Galaev I Y, Mattlasson B. Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications[J]. Journal of Separation Science, 2007, 30(11): 1657-1671. |
16 | Plieva F M, Kirsebom H, Mattlasson B. Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications[J]. Journal of Separation Science, 2011, 34(16/17): 2164-2172. |
17 | Yao K J, Shen S C, Yun J X, et al. Preparation of polyacrylamide-based supermacroporous monolithic cryogelbeds under freezing-temperature variation conditions[J]. Chemical Engineering Science, 2006, 61(20): 6701-6708. |
18 | Hanora A, Plieva F M, Hedström M, et al. Capture of bacterial endotoxins using a supermacroporous monolithic matrix with immobilized polyethyleneimine, lysozyme or polymyxin B[J]. Journal of Biotechnology, 2005, 118(4): 421-433. |
19 | Arvidsson P, Pleeva F M, Lozinsky V I, et al. Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent[J]. Journal of Chromatography A, 2003, 986(2): 275-290. |
20 | Arvidsson P, Pleeva F M, Savina I N, et al. Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns[J]. Journal of Chromatography A, 2002, 977(1): 27-38. |
21 | Tekin K, Uzun L, Şahin Ç, et al. Preparation and characterization of composite cryogels containing imidazole group and use in heavy metal removal[J]. Reactive and Functional Polymers, 2011, 71(10): 985-993. |
22 | Yao K J, Yun J X, Shen S C, et al. Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography[J]. Journal of Chromatography A, 2006, 1109(1): 103-110. |
23 | Bruve L J, Chase H A. Hydrodynamics and adsorption behavior within an expanded bed adsorption column studied using in-bed sampling[J]. Chemical Engineering Science, 2011, 56(10): 3149-3162. |
24 | Uygun M, Akduman B, Akgöl S, et al. A new metal-chelated cryogel for reversible immobilization of urease[J]. Applied Biochemistry and Biotechnology, 2013, 170(8): 1815-1826. |
25 | Savina I N, Galaev I Y, Mattiasson B.Anion-exchange supermacroporous monolithic matrices with grafted polymer brushes of N, N-dimethylaminoethyl-methacrylate[J]. Journal of Chromatography A, 2005, 1092(2): 199-205. |
26 | Yun J X, Cheng X H, Ye J L, et al. Chromatographic adsorption of serum albumin and antibody proteins in cryogels with benzyl-quaternary amine ligands[J]. Journal of Chromatography A, 2015, 1381: 173-183. |
27 | Ye J L, Yun J X, Lin D Q, et al. Poly(hydroxyethyl methacrylate)-based composite cryogel with embedded macroporous cellulose beads for the separation of human serum immunoglobulin and albumin[J]. Journal of Separation Science, 2013, 36: 3813-3820. |
28 | Pan M, Shen S, Chen L, et al. Separation of lactoperoxidase from bovine whey milk by cation exchange composite cryogel embedded macroporous cellulose beads[J]. Separation & Purification Technology, 2015, 147: 132-138. |
29 | Kangkamano T, Numnuam A, Limbut W, et al. Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor[J]. Sensors & Actuators B Chemical, 2017, 246: 854-863. |
30 | Tao S P, Wang C, Sun Y. Coating of nanoparticles on cryogel surface and subsequent double-modification for enhanced ion-exchange capacity of protein[J]. Journal of Chromatography A, 2014, 1359: 76-83. |
31 | Alkan H, Cömert Ş C, Gürbüz F, et al. Cu2+-attached pumice particles embedded composite cryogels for protein purification[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(1): 90-97. |
32 | Wang C, Dong X Y, Jiang Z, et al. Enhanced adsorption capacity of cryogel bed by incorporating polymeric resin particles[J]. Journal of Chromatography A, 2013, 1272 (11): 20-25. |
33 | 刘杰, 沈绍传, 陈平, 等. 内嵌纳米粒阴离子交换聚甲基丙烯酸羟乙酯复合晶胶分离三磷酸胞苷[J]. 化工学报, 2014, 65(10): 3938-3945. |
Liu J, Shen S C, Chen P, et al. Separation of cytidine triphosphate from Saccharomyces cerevisiae broth by anion exchange poly(2-hydroxyethyl methacrylate) composite cryogel embedded with SiO2 nanoparticles[J]. CIESC Journal, 2014, 65(10): 3938-3945. | |
34 | Ma Y K, Ge Y X, Li L B. Advancement of multifunctional hybrid nanogel systems: construction and application in drug co-delivery and imaging technique[J]. Materials Science and Engineering C, 2017, 71(2): 1281-1292. |
35 | Oh J K, Lee D I, Park J M. Biopolymer-based microgels/nanogels for drug delivery applications[J]. Progress in Polymer Science, 2009, 34 (8): 1261-1282. |
36 | Oh J K, Drumright R, Siegwart D J, et al. The development of microgels/nanogels for drug delivery applications[J]. Progress in Polymer Science, 2008, 33(4): 448-477. |
37 | Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications[J]. Chemical Record, 2010, 10(6): 366-376. |
38 | Soni G, Yadav K S. Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art[J]. Saudi Pharmaceutical Journal, 2016, 24(2): 133-139. |
39 | Wu H Q, Wang C C. Biodegradable smart nanogels: a new platform for targeting drug delivery and biomedical diagnostics[J]. Langmuir, 2016, 32(25): 6211-6225. |
40 | Branniguan R P, Khutoryanskiyv V. Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2017, 155: 538-543. |
41 | Ahmed I N, Chang R, Tsai W B. Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose[J]. Colloids and Surfaces B: Biointerfaces, 2017, 152: 339-343. |
42 | Guan J T, Guan Y X, Yun J X, et al. Chromatographic separation of phenyllactic acid from crude broth using cryogels with dual functional groups[J]. Journal of Chromatography A, 2018, 1554(11): 92-100. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[4] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[5] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[6] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[7] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[8] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[9] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[10] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[11] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[12] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[13] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[14] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[15] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||