化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5644-5654.DOI: 10.11949/0438-1157.20200689
收稿日期:
2020-06-02
修回日期:
2020-08-20
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
姬忠礼
作者简介:
刘宇峰(1992—),男,博士研究生,基金资助:
LIU Yufeng(),JI Zhongli(),CHEN Feng,LIU Zhen,CHANG Cheng
Received:
2020-06-02
Revised:
2020-08-20
Online:
2020-12-05
Published:
2020-12-05
Contact:
JI Zhongli
摘要:
气液聚结元件在压缩气体净化等工业领域应用广泛,目前聚结元件的性能难以满足行业不断增长的需求,但是提高聚结元件过滤效率的同时,阻力也会随之升高,不利于其综合性能的优化。为研制低阻高效的聚结元件,利用不同浓度氟硅氧烷丙烯酸酯溶液对聚结滤材进行疏油改性,分析了表面能不同的滤材在气液过滤过程中压降、过滤效率以及二次夹带现象的变化,并对改性在聚结滤芯上的应用效果进行研究。结果表明,改性滤材在过滤效率提高10%的同时,稳态压降可降低约30%。滤材表面性质变化导致的跳跃压降减小是稳态压降降低的主要原因;滤材内液体分布对扩散、惯性分离作用的增强以及二次夹带的减少是效率提高的主要原因。对于表面能不同的疏油滤材,稳态压降和效率均随表面能的减小而升高。聚结滤芯经过改性后品质因子最大可提高92%。
中图分类号:
刘宇峰,姬忠礼,陈锋,刘震,常程. 疏油改性对玻纤聚结元件气液过滤性能的影响[J]. 化工学报, 2020, 71(12): 5644-5654.
LIU Yufeng,JI Zhongli,CHEN Feng,LIU Zhen,CHANG Cheng. Influence of oleophobic modification on gas-liquid filtration performance of glass fiber coalescing elements[J]. CIESC Journal, 2020, 71(12): 5644-5654.
滤材 | 处理剂溶液浓度/%(质量) | 平均水接触角/(°) | 平均DEHS接触角/(°) | 平均孔径/μm | 平均纤维直径/μm | 初始压降/kPa |
---|---|---|---|---|---|---|
GF | — | 120.34 | 39.89 | 10.61 | 2.54 | 0.305 |
GF1 | 2 | 149.35 | 121.40 | 10.96 | 2.86 | 0.310 |
GF2 | 3 | 148.69 | 118.73 | 10.76 | 2.58 | 0.309 |
GF3 | 4 | 146.18 | 114.92 | 10.92 | 3.28 | 0.312 |
GF4 | 5 | 143.84 | 113.32 | 11.03 | 2.79 | 0.320 |
GF5 | 7.5 | 146.58 | 116.10 | 10.87 | 2.94 | 0.317 |
GF6 | 10 | 149.05 | 120.86 | 11.35 | 2.82 | 0.328 |
表1 滤材物性参数
Table 1 Properties of experimental filter materials
滤材 | 处理剂溶液浓度/%(质量) | 平均水接触角/(°) | 平均DEHS接触角/(°) | 平均孔径/μm | 平均纤维直径/μm | 初始压降/kPa |
---|---|---|---|---|---|---|
GF | — | 120.34 | 39.89 | 10.61 | 2.54 | 0.305 |
GF1 | 2 | 149.35 | 121.40 | 10.96 | 2.86 | 0.310 |
GF2 | 3 | 148.69 | 118.73 | 10.76 | 2.58 | 0.309 |
GF3 | 4 | 146.18 | 114.92 | 10.92 | 3.28 | 0.312 |
GF4 | 5 | 143.84 | 113.32 | 11.03 | 2.79 | 0.320 |
GF5 | 7.5 | 146.58 | 116.10 | 10.87 | 2.94 | 0.317 |
GF6 | 10 | 149.05 | 120.86 | 11.35 | 2.82 | 0.328 |
仪器 | 型号 | 量程 | 精度 |
---|---|---|---|
扫描电迁移率粒径谱仪 | TSI 3936 | 0.05~0.5 μm | ±4% |
空气动力学粒径谱仪 | TSI 3321 | 0.5~20 μm | ±4% |
差压变送器 | EJX-110A | 0~20 kPa | ±0.04% |
质量流量控制器 | MCR 500 slpm | 0~500 slpm | ±0.4% |
电子分析天平 | AL204-IC | 0~220 g | 0.1 mg |
表2 实验测试仪器性能参数
Table 2 Parameters of measuring equipment
仪器 | 型号 | 量程 | 精度 |
---|---|---|---|
扫描电迁移率粒径谱仪 | TSI 3936 | 0.05~0.5 μm | ±4% |
空气动力学粒径谱仪 | TSI 3321 | 0.5~20 μm | ±4% |
差压变送器 | EJX-110A | 0~20 kPa | ±0.04% |
质量流量控制器 | MCR 500 slpm | 0~500 slpm | ±0.4% |
电子分析天平 | AL204-IC | 0~220 g | 0.1 mg |
滤芯 | 初始压降/kPa | 通道压降/kPa | 跳跃压降/kPa | 润湿压降/kPa | 稳态压降/kPa |
---|---|---|---|---|---|
F4 | 1.023 | 2.194 | 2.972 | 5.166 | 6.189 |
FN4 | 1.016 | 1.821 | 2.755 | 4.576 | 5.592 |
F6 | 1.385 | 2.44 | 2.907 | 5.347 | 6.732 |
FN6 | 1.418 | 2.886 | 2.102 | 4.988 | 6.406 |
F8 | 1.828 | 2.877 | 2.889 | 5.766 | 7.594 |
FN8 | 1.873 | 4.125 | 2.441 | 6.566 | 8.439 |
表3 滤芯压降对比
Table 3 Comparison of pressure drop for filters
滤芯 | 初始压降/kPa | 通道压降/kPa | 跳跃压降/kPa | 润湿压降/kPa | 稳态压降/kPa |
---|---|---|---|---|---|
F4 | 1.023 | 2.194 | 2.972 | 5.166 | 6.189 |
FN4 | 1.016 | 1.821 | 2.755 | 4.576 | 5.592 |
F6 | 1.385 | 2.44 | 2.907 | 5.347 | 6.732 |
FN6 | 1.418 | 2.886 | 2.102 | 4.988 | 6.406 |
F8 | 1.828 | 2.877 | 2.889 | 5.766 | 7.594 |
FN8 | 1.873 | 4.125 | 2.441 | 6.566 | 8.439 |
1 | Gonfa G, Bustam M A, Sharif A M, et al. Tuning ionic liquids for natural gas dehydration using COSMO-RS methodology[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1141-1148. |
2 | Chang C, Ji Z, Liu C, et al. Permeability of filter cartridges used for natural gas filtration at high pressure[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 419-427. |
3 | Mead-Hunter R, King A J C, Mullins B J. Aerosol-mist coalescing filters—a review[J]. Separation and Purification Technology, 2014, 133: 484-506. |
4 | Raynor P C, Leith D. The influence of accumulated liquid on fibrous filter performance[J]. Journal of Aerosol Science, 2000, 31(1): 19-34. |
5 | Charvet A, Gonthier Y, Gonze E, et al. Experimental and modelled efficiencies during the filtration of a liquid aerosol with a fibrous medium[J]. Chemical Engineering Science, 2010, 65(5): 1875-1886. |
6 | Contal P, Simao J, Thomas D, et al. Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions[J]. Journal of Aerosol Science, 2004, 35(2): 263-278. |
7 | Chen F, Ji Z, Qi Q. Effect of liquid surface tension on the filtration performance of coalescing filters[J]. Separation and Purification Technology, 2019, 209: 881-891. |
8 | Frising T, Thomas D, Denis B, et al. Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modelling study[J]. Chemical Engineering Science, 2005, 60(10): 2751-2762. |
9 | Mullins B J, Agranovski I E, Braddock R D, et al. Effect of fiber orientation on fiber wetting processes[J]. Journal of Colloid and Interface Science, 2004, 269(2): 449-458. |
10 | Mullins B J, Braddock R D, Agranovski I E, et al. Observation and modelling of clamshell droplets on vertical fibres subjected to gravitational and drag forces[J]. Journal of Colloid and Interface Science, 2005, 284(1): 245-254. |
11 | Mullins B J, Braddock R D, Agranovski I E, et al. Observation and modelling of barrel droplets on vertical fibres subjected to gravitational and drag forces[J]. Journal of Colloid and Interface Science, 2006, 300(2): 704-712. |
12 | Mullins B J, Mead-Hunter R, Pitta R N, et al. Comparative performance of philic and phobic oil-mist filters[J]. AIChE Journal, 2014, 60(8): 2976-2984. |
13 | Chen F, Ji Z, Qi Q. Effect of pore size and layers on filtration performance of coalescing filters with different wettabilities[J]. Separation and Purification Technology, 2018, 201: 71-78. |
14 | Kampa D, Wurster S, Buzengeiger J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration[J]. International Journal of Multiphase Flow, 2014, 58: 313-324. |
15 | Kampa D, Wurster S, Meyer J, et al. Validation of a new phenomenological “jump-and-channel”model for the wet pressure drop of oil mist filters[J]. Chemical Engineering Science, 2015, 122: 150-160. |
16 | Patel S U, Kulkarni P S, Patel S U, et al. The effect of surface energy of woven drainage channels in coalescing filters[J]. Separation and Purification Technology, 2012, 87: 54-61. |
17 | Penner T, Meyer J, Kasper G, et al. Impact of operating conditions on the evolution of droplet penetration in oil mist filters[J]. Separation and Purification Technology, 2019, 211: 697-703. |
18 | Hotz C J, Mead-Hunter R, Becker T, et al. Detachment of droplets from cylinders in flow using an experimental analogue[J]. Journal of Fluid Mechanics, 2015, 771: 327-340. |
19 | Kolb H E, Watzek A K, Zaghini F V, et al. A mesoscale model for the relationship between efficiency and internal liquid distribution of droplet mist filters[J]. Journal of Aerosol Science, 2018, 123: 219-230. |
20 | Wurster S, Meyer J, Kolb H E, et al. Bubbling vs. blow-off —on the relevant mechanism(s) of drop entrainment from oil mist filter media[J]. Separation and Purification Technology, 2015, 152: 70-79. |
21 | Wurster S, Kampa D, Meyer J, et al. Measurement of oil entrainment rates and drop size spectra from coalescence filter media[J]. Chemical Engineering Science, 2015, 132: 72-80. |
22 | 常程, 姬忠礼, 黄金斌, 等. 气液过滤过程中液滴二次夹带现象分析[J]. 化工学报, 2015, 66(4): 1344-1352. |
Chang C, Ji Z L, Huang J B, et al. Analysis of re-entrainment in progress of gas-liquid filtration[J]. CIESC Journal, 2015, 66(4): 1344-1352. | |
23 | Wu Y, Manzo G M, Chase G G. Thickness shrinkage of microfiber media in gas–liquid coalescence filtration[J]. Separation and Purification Technology, 2015, 141: 188-196. |
24 | Vincent J H. Air filtration: an integrated approach to the theory and applications of fibrous filters: R. C. Brown. Pergamon Press, Oxford (1993)[J]. Journal of Aerosol Science, 1995, 26(1): 171-172. |
25 | Washburn E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283. |
26 | Mullins, Benjamin J, Braddock R D, et al. Capillarity in fibrous filter media: relationship to filter properties[J]. Chemical Engineering Science, 2007, 62(22): 6191-6198. |
27 | Conder J R, Liew T P. Fine mist filtration by wet filters(II): Efficiency of fibrous filters[J]. Journal of Aerosol Science, 1989, 20(1): 45-57. |
28 | Cheng Y S, Yamada Y, Yeh H C. Diffusion deposition on model fibrous filters with intermediate porosity[J]. Aerosol Science and Technology, 1990, 12(2): 286-299. |
29 | Wei X, Chen F, Wang H, et al. Efficient removal of aerosol oil-mists using superoleophobic filters[J]. Journal of Materials Chemistry A, 2018, 6(3): 871-877. |
30 | Wurster S, Meyer J, Kasper G. On the relationship of drop entrainment with bubble formation rates in oil mist filters[J]. Separation and Purification Technology, 2017, 179: 542-549. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[10] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[11] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[12] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[13] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[14] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[15] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||