化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1722-1731.DOI: 10.11949/0438-1157.20200692
收稿日期:
2020-06-02
修回日期:
2020-09-09
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
李长平,李雪辉
作者简介:
杨诗(1994—),女,硕士研究生,基金资助:
YANG Shi1(),CAI Yang2,LI Changping2(),LI Xuehui1()
Received:
2020-06-02
Revised:
2020-09-09
Online:
2021-03-05
Published:
2021-03-05
Contact:
LI Changping,LI Xuehui
摘要:
利用原位合成法将磷钨酸(PTA)负载于锆基金属有机骨架材料(MOFs)上,通过X射线衍射(XRD)、红外(FT-IR)、氮气吸附-脱附、扫描电镜(SEM)以及热重(TG)等表征证实了PTA@MOF-808复合材料的成功制备。通过制备的PTA@MOF-808吸附剂在模型油中对苯并噻吩(BT)的静态吸附脱硫实验,考察了PTA负载量、温度、油剂比、模型油硫含量以及不同有机硫对复合材料吸附脱硫性能的影响。实验结果表明:PTA的引入致使MOF-808对正辛烷中BT的吸附量提高了约2倍。PTA@MOF-808吸附速率快、在300 s时基本吸附完全,并且其第6次循环使用吸附BT的吸附量为首次吸附量的86%。最后,通过PTA@MOF-808对BT吸附的动力学和热力学研究表明该吸附过程符合准二级动力学模型,吸附过程包含物理吸附与化学吸附。
中图分类号:
杨诗, 蔡阳, 李长平, 李雪辉. 磷钨酸负载锆基金属有机骨架PTA@MOF-808的制备及其吸附脱硫性能[J]. 化工学报, 2021, 72(3): 1722-1731.
YANG Shi, CAI Yang, LI Changping, LI Xuehui. Preparation of phosphotungstic acid loaded Zr-based metal-organic framework PTA@MOF-808 and its adsorption desulfurization performance[J]. CIESC Journal, 2021, 72(3): 1722-1731.
样品 | BET比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) |
---|---|---|
MOF-808 | 1186.6 | 0.52 |
10%(质量) PTA@MOF-808 | 653.4 | 0.39 |
20%(质量) PTA@MOF-808 | 563.4 | 0.36 |
30%(质量) PTA@MOF-808 | 388.3 | 0.28 |
40%(质量) PTA@MOF-808 | 369.1 | 0.21 |
50%(质量) PTA@MOF-808 | 166.7 | 0.15 |
表1 复合材料PTA@MOF-808的BET比表面积和孔体积
Table 1 BET surface areas and pore volumes of PTA@MOF-808 samples
样品 | BET比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) |
---|---|---|
MOF-808 | 1186.6 | 0.52 |
10%(质量) PTA@MOF-808 | 653.4 | 0.39 |
20%(质量) PTA@MOF-808 | 563.4 | 0.36 |
30%(质量) PTA@MOF-808 | 388.3 | 0.28 |
40%(质量) PTA@MOF-808 | 369.1 | 0.21 |
50%(质量) PTA@MOF-808 | 166.7 | 0.15 |
Sulfur compound | Q0/(mg·g-1) | Sulfur removal/% |
---|---|---|
TP | 18.5 | 46.7 |
BT | 25.4 | 63.4 |
DBT | 34.9 | 87.2 |
表2 20%(质量) PTA@MOF-808对不同模型油的吸附量
Table 2 The adsorption capacity of 20%(mass) PTA@MOF-808 for different sulfur compound
Sulfur compound | Q0/(mg·g-1) | Sulfur removal/% |
---|---|---|
TP | 18.5 | 46.7 |
BT | 25.4 | 63.4 |
DBT | 34.9 | 87.2 |
浓度/(μg·g-1) | R2 | |
---|---|---|
准一级 | 准二级 | |
100 | 0.98796 | 0.99909 |
200 | 0.90400 | 0.99978 |
300 | 0.92852 | 0.99959 |
400 | 0.83953 | 0.99985 |
500 | 0.93483 | 0.99987 |
表3 吸附动力学拟合参数R2值
Table 3 The fitting parameters R2 of adsorption kinetics
浓度/(μg·g-1) | R2 | |
---|---|---|
准一级 | 准二级 | |
100 | 0.98796 | 0.99909 |
200 | 0.90400 | 0.99978 |
300 | 0.92852 | 0.99959 |
400 | 0.83953 | 0.99985 |
500 | 0.93483 | 0.99987 |
图13 Langmuir 吸附等温线(a)和Freundlich吸附等温线(b)
Fig.13 Adsorption isotherms of the linear fitted curve of Langmuir model (a) and the linear fitted curve of Freundlich model (b)
等温吸附线模型 | 等温吸附方程 | Qm/(mg·g-1) | b/(g·μg-1) | R2 |
---|---|---|---|---|
Langmuir | y=0.74812x+0.02832 | 35.3107 | 47.1993 | 0.98225 |
等温吸附线模型 | 等温吸附方程 | kF/((mg·g-1)(g·μg-1)1/a) | a | R2 |
Freundlich | y=0.28376x+0.83893 | 6.9013 | 3.5241 | 0.96744 |
表4 吸附等温线拟合参数
Table 4 The fitting parameters of adsorption isotherms
等温吸附线模型 | 等温吸附方程 | Qm/(mg·g-1) | b/(g·μg-1) | R2 |
---|---|---|---|---|
Langmuir | y=0.74812x+0.02832 | 35.3107 | 47.1993 | 0.98225 |
等温吸附线模型 | 等温吸附方程 | kF/((mg·g-1)(g·μg-1)1/a) | a | R2 |
Freundlich | y=0.28376x+0.83893 | 6.9013 | 3.5241 | 0.96744 |
1 | Harrison R M, Yin J. Particulate matter in the atmosphere: which particle properties are important for its effects on health?[J]. Science of the Total Environment, 2000, 249(1/2/3): 85-101. |
2 | Chen S Q, Zhao C C, Liu Q Y, et al. Thermophilic biodesulfurization and its application in oil desulfurization[J]. Applied Microbiology and Biotechnology, 2018, 102(21): 9089-9103. |
3 | Song C, Ma X. Ultra-clean diesel fuels by deep desulfurization and deep dearomatization of middle distillates[M]// Practical Advances in Petroleum Processing.New York:Springer, 2006: 317-372. |
4 | Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal. Today, 2003, 86(7): 211-263. |
5 | Khan N A, Jun J W, Jeong J H, et al. Remarkable adsorptive performance of a metal-organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene[J]. Chemical Communications, 2011, 47(4): 1306-1308. |
6 | Rowsell J L C, Yaghi O M. Metal-organic frameworks: a new class of porous materials[J]. Microporous & Mesoporous Materials, 2004, 73(1/2): 3-14. |
7 | Pawelec B, Navarro R M, Campos-Martin J M, et al. Towards near zero-sulfur liquid fuels: a perspective review[J]. Catalysis Science & Technology, 2011, 1(1): 23-42. |
8 | Deliyanni E, Seredych M, Bandosz T J. Interactions of 4,6-dimethyldibenzothiophene with the surface of activated carbons[J]. Langmuir, 2009, 25(16): 9302-9312. |
9 | Kwon J M, Moon J H, Bae Y S, et al. Adsorptive desulfurization and denitrogenation of refinery fuels using mesoporous silica adsorbents[J]. Chemsuschem, 2008, 1(4): 307-309. |
10 | Zhang Z Y, Shi T B, Jia C Z, et al. Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites[J]. Applied Catalysis B Environmental, 2008, 82(1/2): 1-10. |
11 | Srivastav A, Srivastava V C. Adsorptive desulfurization by activated alumina[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1133-1140. |
12 | Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
13 | Furukawa H, Cordova K E, O'keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
14 | Zhu L J, Jia X Y, Bian H, et al. Structure and adsorptive desulfurization performance of the composite material MOF-5@AC[J]. New Journal of Chemistry, 2018, 42(5): 3840-3850. |
15 | 孙瑞阳, 陆颖舟, 孟洪, 等. 噻吩硫化物的硝化产物用于模型油中DBT的高效吸附[J]. 化工学报, 2020, 71(5): 2256-2264. |
Sun R Y, Lu Y Z, Meng H, et al. Efficient adsorption of DBT from model oil by the nitrified thiophenic sulfides via complexation thereof[J]. CIESC Journal, 2020, 71(5): 2256-2264. | |
16 | Khan N A, Jhung S H. Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel[J]. Journal of Hazardous Materials, 2013, 260(18): 1050-1056. |
17 | Chen M Y, Liu J, Liu Y C, et al. Magnetic hybridized Fe3O4/HKUST-1 composite modified with graphite oxide to remove thiophene from model fuels[J]. Petroleum Science and Technology, 2019, 37(22): 2260-2268. |
18 | Habimana F, Shi D, Ji S F. Synthesis of Cu-BTC/Mt composites porous materials and their performance in adsorptive desulfurization process[J]. Applied Clay Science, 2018, 152: 303-310. |
19 | Jin T, Yang Q, Meng C, et al. Promoting desulfurization capacity and separation efficiency simultaneously by the novel magnetic Fe3O4@PAA@MOF-199[J]. RSC Advances, 2014, 4(79): 41902-41909. |
20 | Khan N A, Jhung S H. Adsorptive removal of benzothiophene using porous copper-benzenetricarboxylate loaded with phosphotungstic acid[J]. Fuel Processing Technology, 2012, 100: 49-54. |
21 | Furukawa H, Gandara F, Zhang Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. |
22 | 韩易潼. 锆基金属-有机骨架UiO-66的调控合成研究[D]. 大连: 大连理工大学, 2018. |
Han Y T. Modulated synthesis of zirconium based metal-organic framework UiO-66[D]. Dalian: Dalian University of Technology, 2018. | |
23 | Ullah L, Zhao G, Xu Z, et al. 12-Tungstophosphoric acid niched in Zr-based metal-organic framework: a stable and efficient catalyst for Friedel-Crafts acylation[J]. Ence China Chemistry, 2018, 61(4): 402-411. |
24 | Zhang Y, Degirmenci V, Li C, et al. Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural[J]. Chemsuschem, 2011, 4(1): 59-64. |
25 | Lin S, Zhao Y F, Bediako J K, et al. Structure-controlled recovery of palladium (Ⅱ) from acidic aqueous solution using metal-organic frameworks of MOF-802, UiO-66 and MOF-808[J]. Chemical Engineering Journal, 2019, 362: 280-286. |
26 | 袁媛. 杂多酸离子液体的固载合成及其汽油脱硫性能研究[D]. 广州: 华南理工大学, 2017. |
Yuan Y. Heteropolyacid ionic liquid: immobilization and their application in gasoline desulfurization[D]. Guangzhou: South China University of Technology, 2017. | |
27 | Dai W, Tian N, Liu C M, et al. (Zn, Ni, Cu)-BTC functionalized with phosphotungstic acid for adsorptive desulfurization in the presence of benzene and ketone[J]. Energy & Fuels, 2017, 31(12): 13502-13508. |
28 | Ardila-Suárez C, Rodríguez-Pereira J, Baldovino-Medrano V G, et al. An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties[J]. Crystengcomm, 2019, 21(9): 1407-1415. |
29 | Xiong J, Zhu W, Ding W, et al. Phosphotungstic acid immobilized on ionic liquid-modified SBA-15: efficient hydrophobic heterogeneous catalyst for oxidative desulfurization in fuel[J]. Industrial & Engineering Chemistry Research, 2014, 53(51): 19895-19904. |
30 | Lin Z J, Yang Z, Liu T F, et al. Microwave-assisted synthesis of a series of lanthanide metal–organic frameworks and gas sorption properties[J]. Inorganic Chemistry, 2012, 51(3): 1813-1820. |
31 | Liu X, Wang J, Li Q, et al. Synthesis of rare earth metal-organic frameworks (Ln-MOFs) and their properties of adsorption desulfurization[J]. Journal of Rare Earths, 2014, 32(2): 189-194. |
32 | Habimana F, Huo Y X, Jiang S, et al. Synthesis of europium metal-organic framework (Eu-MOF) and its performance in adsorptive desulfurization[J]. Adsorption, 2016, 22(8): 1147-1155. |
33 | Xiao J, Li Z, Liu B, et al. Adsorption of benzothiophene and dibenzothiophene on ion-impregnated activated carbons and ion-exchanged Y zeolites[J]. Energy & Fuels, 2008, 22(6): 3858-3863. |
34 | Xiao J, Song C, Ma X, et al. Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3436-3443. |
35 | Ho Y S. Citation review of Lagergren kinetic rate equation on adsorption reactions[J]. Scientometrics, 2004, 59(1): 171-177. |
36 | Guo Y, Jia Z Q, Shi Q, et al. Zr(Ⅳ)-based coordination porous materials for adsorption of copper(Ⅱ) from water[J]. Microporous and Mesoporous Materials, 2019, 285: 215-222. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[5] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[8] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[11] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[12] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[13] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[14] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[15] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||