化工学报 ›› 2021, Vol. 72 ›› Issue (2): 653-668.DOI: 10.11949/0438-1157.20201306
收稿日期:
2020-09-13
修回日期:
2020-12-15
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
罗英武
作者简介:
赵玉海(1994—),男,博士研究生,基金资助:
Received:
2020-09-13
Revised:
2020-12-15
Online:
2021-02-05
Published:
2021-02-05
Contact:
LUO Yingwu
摘要:
界面聚合通常指限定在液-液或液-固界面上进行的聚合反应,散见于少数高活性的缩聚反应体系。20世纪90年代,以RAFT聚合、ATRP等为代表的可逆失活自由基聚合(reversible deactivation radical polymerization,RDRP)因其兼具传统自由基聚合和活性阴离子聚合的优点,广泛用于聚合物链结构的可控制备。另一方面,RDRP已被用于构建更为普适的界面聚合反应,基于RDRP的界面聚合已发展成为一种可控制备具有精准纳米结构的功能性聚合物产品的新方法。本文以RAFT液-液界面聚合为主,阐述了RAFT法和ATRP法在液-液界面、液-固界面进行“活性”聚合的反应机理,总结了该领域的研究进展。在此基础上,重点介绍“活性”界面聚合在构建纳米(中空)胶囊、纳米界面工程与纳米分散以及纳米聚合物刷表面等方面的潜在应用前景。
中图分类号:
赵玉海, 罗英武. 可逆失活自由基界面聚合[J]. 化工学报, 2021, 72(2): 653-668.
ZHAO Yuhai, LUO Yingwu. Reversible deactivation radical interfacial polymerization[J]. CIESC Journal, 2021, 72(2): 653-668.
98 | Yeow J, Chapman R, Gormley A J, et al. Up in the air: oxygen tolerance in controlled/living radical polymerisation[J]. Chemical Society Reviews, 2018, 47(12): 4357-4387. |
99 | Yan W, Dadashi-Silab S, Matyjaszewski K, et al. Surface-initiated photoinduced ATRP: mechanism, oxygen tolerance, and temporal control during the synthesis of polymer brushes[J]. Macromolecules, 2020, 53(8): 2801-2810. |
1 | Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: trend and challenges[J]. Chemical Reviews, 2018, 118(13): 6189-6235. |
2 | Raj W, Russo A, Zhang Y, et al. Renewable fabric surface-initiated ATRP polymerizations: towards mixed polymer brushes[J]. Nanomaterials, 2020, 10(3): 536-547. |
3 | Zhang F, Fan J B, Wang S. Interfacial polymerization: from chemistry to functional materials[J]. Angewandte Chemie International Edition, 2020, 59(49): 21840-21856. |
4 | Zhao N, Yan L, Zhao X, et al. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications[J]. Chemical Reviews, 2019, 119(3): 1666-1762. |
5 | 项青, 罗英武. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111. |
Xiang Q, Luo Y W. RAFT emulsion polymerization[J]. Progress in Chemistry, 2018, 30(1): 101-111. | |
6 | Zhang H. Controlled/“living” radical precipitation polymerization: a versatile polymerization technique for advanced functional polymers[J]. European Polymer Journal, 2013, 49(3): 579-600. |
7 | Wang H, Song M, Hang T. Functional interfaces constructed by controlled/living radical polymerization for analytical chemistry[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 2881-2898. |
8 | Bao X, Fan X, Yu Y, et al. Graft modification of lignin-based cellulose via enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and free-radical coupling[J]. International Journal of Biological Macromolecules, 2020, 144: 267-278. |
9 | Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes[J]. Journal of the American Chemical Society, 1995, 117(20): 5614-5615. |
10 | Chiefari J, Chong Y K, Ercole F, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process[J]. Macromolecules, 1998, 31(16): 5559-5562. |
11 | Georges M K, Veregin R P N, Kazmaier P M, et al. Narrow molecular weight resins by a free-radical polymerization process[J]. Macromolecules, 1993, 26(11): 2987-2988. |
12 | D'Agosto F, Rieger J, Lansalot M. RAFT-mediated polymerization-induced self-assembly[J]. Angewandte Chemie International Edition, 2020, 59(22): 8368-8392. |
13 | Matyjaszewski K. Advanced materials by atom transfer radical polymerization[J]. Advanced Materials, 2018, 30(23): 1706441. |
14 | Pyun J, Matyjaszewski K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization[J]. Chemistry of Materials, 2001, 13(10): 3436-3448. |
15 | Moad G, Rizzardo E, Thang S H. Living radical polymerization by the raft process—a third update[J]. Australian Journal of Chemistry, 2012, 65(8): 985-1076. |
16 | Jackson A W. Reversible-deactivation radical polymerization of cyclic ketene acetals[J]. Polymer Chemistry, 2020, 11(21): 3525-3545. |
17 | Liu D, He J, Zhang L, et al. 100th anniversary of macromolecular science viewpoint: heterogenous reversible deactivation radical polymerization at room temperature. recent advances and future opportunities[J]. ACS Macro Letters, 2019, 8(12): 1660-1669. |
18 | Wittbecker E L, Morgan P W. Interfacial polycondensation[J]. Journal of Polymer Science, 1959, 40(137): 289-297. |
19 | Song Y, Fan J B, Wang S. Recent progress in interfacial polymerization[J]. Materials Chemistry Frontiers, 2017, 1(6): 1028-1040. |
20 | Zhang Y, Feng X, Yuan S, et al. Challenges and recent advances in MOF-polymer composite membranes for gas separation[J]. Inorganic Chemistry Frontiers, 2016, 3(7): 896-909. |
21 | He Z, Jiang W, Schalley C A. Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture[J]. Chemical Society Reviews, 2015, 44(3): 779-789. |
22 | Qi G, Wu Z, Wang H. Highly conductive and semitransparent free-standing polypyrrole films prepared by chemical interfacial polymerization[J]. Journal of Materials Chemistry C, 2013, 1(42): 7102-7110. |
23 | Breitenkamp K, Emrick T. Novel polymer capsules from amphiphilic graft copolymers and cross-metathesis[J]. Journal of the American Chemical Society, 2003, 125(40): 12070-12071. |
24 | Luo Y, Gu H. A general strategy for nano-encapsulation via interfacially confined living/controlled radical miniemulsion polymerization[J]. Macromolecular Rapid Communications, 2006, 27(1): 21-25. |
25 | Luo Y, Gu H. Nanoencapsulation via interfacially confined reversible addition fragmentation transfer (RAFT) miniemulsion polymerization[J]. Polymer, 2007, 48(11): 3262-3272. |
26 | Klumperman B. Styrene/maleic anhydride macro-RAFT-mediated encapsulation[J]. Macromolecular Chemistry and Physics, 2006, 207(10): 861-863. |
27 | Lu F, Luo Y, Li B. pH effects on the synthesis of nanocapsules via interfacial miniemulsion polymerization mediated by amphiphilic RAFT agent with the R group of poly(methyl acrylic acid-ran-styrene)[J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2206-2212. |
28 | Torza S, Mason S G. Three-phase interactions in shear and electrical fields[J]. Journal of Colloid and Interface Science, 1970, 33(1): 67-83. |
29 | Chen H, Luo Y. Facile synthesis of nanocapsules and hollow nanoparticles consisting of fluorinated polymer shells by interfacial raft miniemulsion polymerization[J]. Macromolecular Chemistry and Physics, 2011, 212(7): 737-743. |
30 | Sundberg D C, Casassa A P, Pantazopoulos J, et al. Morphology development of polymeric microparticles in aqueous dispersions(Ⅰ): Thermodynamic considerations[J]. Journal of Applied Polymer Science, 1990, 41(7/8): 1425-1442. |
31 | Gonzalez-Ortiz L J, Asua J M. Development of particle morphology in emulsion polymerization(1): Cluster dynamics[J]. Macromolecules, 1995, 28(9): 3135-3145. |
32 | Luo Y, Zhou X. Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(9): 2145-2154. |
33 | 朱新星. 界面RAFT细乳液聚合制备交联聚合物纳米胶囊[D]. 杭州: 浙江大学, 2008. |
Zhu X X. Fabrication of cross-linked polymeric nanocapsules via RAFT interfacial miniemulsion polymerization[D]. Hangzhou: Zhejiang University, 2008. | |
34 | 卢福军. 聚合物纳米胶囊制备新方法——RAFT细乳液界面聚合[D]. 杭州: 浙江大学, 2010. |
Lu F J. A general route to synthesize the polymeric nanocapsules: RAFT interfacial miniemulsion polymerization[D]. Hangzhou: Zhejiang University, 2010. | |
35 | Lu F, Luo Y, Li B, et al. Synthesis of thermo-sensitive nanocapsules via inverse miniemulsion polymerization using a PEO-RAFT agent[J]. Macromolecules, 2010, 43(1): 568-571. |
36 | Utama R H, Stenzel M H, Zetterlund P B. Inverse miniemulsion periphery RAFT polymerization: a convenient route to hollow polymeric nanoparticles with an aqueous core[J]. Macromolecules, 2013, 46(6): 2118-2127. |
37 | Stoffelbach F, Belardi B, Santos J M R C, et al. Use of an amphiphilic block copolymer as a stabilizer and a macroinitiator in miniemulsion polymerization under AGET ATRP conditions[J]. Macromolecules, 2007, 40(25): 8813-8816. |
38 | Li W, Matyjaszewski K, Albrecht K, et al. Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP[J]. Macromolecules, 2009, 42(21): 8228-8233. |
39 | Li W, Yoon J A, Matyjaszewski K. Dual-reactive surfactant used for synthesis of functional nanocapsules in miniemulsion[J]. Journal of the American Chemical Society, 2010, 132(23): 7823-7825. |
40 | Thickett S C, Teo G H. Recent advances in colloidal nanocomposite design via heterogeneous polymerization techniques[J]. Polymer Chemistry, 2019, 10(23): 2906-2924. |
41 | Che Y, Zhang T, Du Y, et al. “On Water” surface‐initiated polymerization of hydrophobic monomers[J]. Angewandte Chemie International Edition, 2018, 57(50): 16380-16384. |
42 | Huang X, Wirth M J. Surface-initiated radical polymerization on porous silica[J]. Analytical Chemistry, 1997, 69(22): 4577-4580. |
43 | Mora-Barrantes I, Valentín J L, Rodríguez A, et al. Poly(styrene)/silica hybrid nanoparticles prepared via ATRP as high-quality fillers in elastomeric composites[J]. Journal of Materials Chemistry, 2012, 22(4): 1403-1410. |
44 | Radhakrishnan B, Constable A N, Brittain W J. A novel route to organic-inorganic hybrid nanomaterials[J]. Macromolecular Rapid Communications, 2008, 29(22): 1828-1833. |
45 | Ohno K, Akashi T, Huang Y, et al. Surface-initiated living radical polymerization from narrowly size-distributed silica nanoparticles of diameters less than 100 nm[J]. Macromolecules, 2010, 43(21): 8805-8812. |
46 | Ohno K, Tabata H, Tsujii Y. Surface-initiated living radical polymerization from silica particles functionalized with poly(ethylene glycol)-carrying initiator[J]. Colloid and Polymer Science, 2013, 291(1): 127-135. |
47 | Saigal T, Dong H, Matyjaszewski K, et al. Pickering emulsions stabilized by nanoparticles with thermally responsive grafted polymer brushes[J]. Langmuir, 2010, 26(19): 15200-15209. |
48 | Ejaz M, Yamamoto S, Ohno K, et al. Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir-Blodgett and atom transfer radical polymerization techniques[J]. Macromolecules, 1998, 31(17): 5934-5936. |
49 | Matyjaszewski K, Miller P J, Shukla N, et al. Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator[J]. Macromolecules, 1999, 32(26): 8716-8724. |
50 | Turgman-Cohen S, Genzer J. Computer simulation of controlled radical polymerization: effect of chain confinement due to initiator grafting density and solvent quality in “grafting from” method[J]. Macromolecules, 2010, 43(22): 9567-9577. |
51 | Gao X, Feng W, Zhu S, et al. Kinetic modeling of surface-initiated atom transfer radical polymerization[J]. Macromolecular Reaction Engineering, 2010, 4(3/4): 235-250. |
52 | Esteves A, Bombalski L, Trindade T, et al. Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion[J]. Small, 2007, 3(7): 1230-1236. |
53 | Bombalski L, Dong H, Listak J, et al. Null-scattering hybrid particles using controlled radical polymerization[J]. Advanced Materials, 2007, 19(24): 4486-4490. |
54 | Zhang T, Benetti E M, Jordan R. Surface-initiated Cu0-mediated CRP for the rapid and controlled synthesis of quasi-3D structured polymer brushes[J]. ACS Macro Letters, 2019, 8(2): 145-153. |
55 | Zoppe J O, Ataman N C, Mocny P, et al. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes[J]. Chemical Reviews, 2017, 117(3): 1105-1318. |
56 | Mocny P, Klok H. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization[J]. Progress in Polymer Science, 2020, 100: 101185. |
57 | Yan J, Bockstaller M R, Matyjaszewski K. Brush-modified materials: control of molecular architecture, assembly behavior, properties and applications[J]. Progress in Polymer Science, 2020, 100: 101180. |
58 | Baum M, Brittain W J. Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique[J]. Macromolecules, 2002, 35(3): 610-615. |
59 | Le-Masurier S P, Gody G, Perrier S, et al. One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and “grafting from” RAFT polymerization[J]. Polymer Chemistry, 2014, 5(8): 2816-2823. |
60 | Zhao Y, Perrier S. Synthesis of poly(methyl acrylate) grafted onto silica particles by Z-supported RAFT polymerization[J]. Macromolecular Symposia, 2007, 248(1): 94-103. |
61 | Moraes J, Ohno K, Maschmeyer T, et al. Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization[J]. Chemical Communications, 2013, 49(80): 9077-9088. |
62 | Hojjati B, Sui R, Charpentier P A. Synthesis of TiO2/PAA nanocomposite by RAFT polymerization[J]. Polymer, 2007, 48(20): 5850-5858. |
63 | Ohno K, Mori C, Akashi T, et al. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization[J]. Biomacromolecules, 2013, 14(10): 3453-3462. |
64 | Raula J, Shan J, Nuopponen M, et al. Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization[J]. Langmuir, 2003, 19(8): 3499-3504. |
65 | Badri A, Whittaker M R, Zetterlund P B. Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(15): 2981-2992. |
66 | Eskandari P, Abousalman-Rezvani Z, Roghani-Mamaqani H, et al. Polymer grafting on graphene layers by controlled radical polymerization[J]. Advances in Colloid and Interface Science, 2019, 273: 102021. |
67 | Jin T, Zha H, Randazzo K, et al. Local disorder facilitates chain stretching in crowded polymer brushes[J]. The Journal of Physical Chemistry Letters, 2020, 11(18): 7814-7818. |
68 | Nguyen D, Zondanos H S, Farrugia J M, et al. Pigment encapsulation by emulsion polymerization using macro-RAFT copolymers[J]. Langmuir, 2008, 24(5): 2140-2150. |
69 | Ali S I, Heuts J P A, Hawkett B S, et al. Polymer encapsulated gibbsite nanoparticles: efficient preparation of anisotropic composite latex particles by RAFT-based starved feed emulsion polymerization[J]. Langmuir, 2009, 25(18): 10523-10533. |
70 | Walheim S, Schäffer E, Mlynek J, et al. Nanophase-separated polymer films as high-performance antireflection coatings[J]. Science, 1999, 283(5401): 520-522. |
71 | Sun Z, Luo Y. Fabrication of non-collapsed hollow polymeric nanoparticles with shell thickness in the order of ten nanometres and anti-reflection coatings[J]. Soft Matter, 2011, 7(3): 871-875. |
72 | Yoldas B E, Annen M J, Bostaph J. Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation[J]. Chemistry of Materials, 2000, 12(8): 2475-2484. |
73 | Ye C H, Luo Y W, Liu X S. Synthesis of non-collapsed hollow polymeric nanoparticles with shell thickness on the order of polymer gyration radius[J]. Polymer, 2011, 52(3): 683-693. |
74 | Luo Y, Ye C. Using nanocapsules as building blocks to fabricate organic polymer nanofoam with ultra low thermal conductivity and high mechanical strength[J]. Polymer, 2012, 53(25): 5699-5705. |
75 | Sun Z, Cai C, Guo F, et al. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors[J]. Nanotechnology, 2018, 29(14): 145704-145715. |
76 | Zetterlund P B, Kagawa Y, Okubo M. Controlled/living radical polymerization in dispersed systems[J]. Chemical Reviews, 2008, 108(9): 3747-3794. |
77 | Utama R H, Guo Y, Zetterlund P B, et al. Synthesis of hollow polymeric nanoparticles for protein delivery via inverse miniemulsion periphery RAFT polymerization[J]. Chemical Communications, 2012, 48(90): 11103-11105. |
78 | Huang X, Hu J, Li Y, et al. Engineering organic/inorganic nanohybrids through RAFT polymerization for biomedical applications[J]. Biomacromolecules, 2019, 20(12): 4243-4257. |
79 | Jiang S, Van Dyk A, Maurice A, et al. Design colloidal particle morphology and self-assembly for coating applications[J]. Chemical Society Reviews, 2017, 46(12): 3792-3807. |
80 | Zgheib N, Putaux J L, Thill A, et al. Cerium oxide encapsulation by emulsion polymerization using hydrophilic macroRAFT agents[J]. Polymer Chemistry, 2013, 4(3): 607-614. |
81 | Tan D Q. The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites[J]. Journal of Applied Polymer Science, 2020, 137(33): 49379-49410. |
82 | Chen J, Wang X, Yu X, et al. High dielectric constant and low dielectric loss poly (vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates[J]. Journal of Materials Chemistry C, 2018, 6(2): 271-279. |
83 | Huang X, Sun B, Zhu Y, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications[J]. Progress in Materials Science, 2019, 100: 187-225. |
84 | Hu J, Zhang S, Tang B. 2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications[J]. Energy Storage Materials, 2021, 34: 260-281. |
85 | Luo H, Zhou X, Ellingford C, et al. Interface design for high energy density polymer nanocomposites[J]. Chemical Society Reviews, 2019, 48(16): 4424-4465. |
86 | Shen Y, Lin Y H, Nan C W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core-shell structured particles[J]. Advanced Functional Materials, 2007, 17(14): 2405-2410. |
87 | Yang K, Huang X, Huang Y, et al. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application[J]. Chemistry of Materials, 2013, 25(11): 2327-2338. |
88 | Chen S, Lv X, Han X. Significantly improved energy density of BaTiO3 nanocomposites by accurate interfacial tailoring using a novel rigid-fluoro-polymer[J]. Polymer Chemistry, 2018, 9(5): 548-557. |
89 | Hu Q, Gan S, Bao Y, et al. Controlled/“living” radical polymerization-based signal amplification strategies for biosensing[J]. Journal of Materials Chemistry B, 2020, 8(16): 3327-3340. |
90 | Liu R, Zhao J, Han Q, et al. One-step assembly of a biomimetic biopolymer coating for particle surface engineering[J]. Advanced Materials, 2018, 30(38): 1802851. |
91 | de Gennes P G. Conformations of polymers attached to an interface[J]. Macromolecules, 1980, 13(5): 1069-1075. |
92 | Gehan H, Fillaud L, Chehimi M M, et al. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced raman scattering[J]. ACS Nano, 2010, 4(11): 6491-6500. |
93 | Kumar S, Tong X, Dory Y L, et al. A CO2-switchable polymer brush for reversible capture and release of proteins[J]. Chemical Communications, 2013, 49(1): 90-92. |
94 | Zhang X, Chen Q, Wei R, et al. Design of poly ionic liquids modified cotton fabric with ion species-triggered bidirectional oil-water separation performance[J]. Journal of Hazardous Materials, 2020, 400: 123163. |
95 | Li L, Xiang Y, Yang W, et al. Embedded polyzwitterionic brush-modified nanofibrous membrane through subsurface-initiated polymerization for highly efficient and durable oil/water separation[J]. Journal of Colloid and Interface Science, 2020, 575: 388-398. |
96 | Li Y, Zhu L, Grishkewich N, et al. CO2-responsive cellulose nanofibers aerogels for switchable oil-water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9367-9373. |
97 | Liu Y, Wang X, Feng S. Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation[J]. Advanced Functional Materials, 2019, 29(29): 1902488. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[4] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[5] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[6] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[7] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[8] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[11] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[12] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[13] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[14] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[15] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||