化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3149-3159.DOI: 10.11949/0438-1157.20210027
梁苏卓成1(),姬国勋1(),孙新利1,王波3,张仕通2,代星2()
收稿日期:
2021-01-08
修回日期:
2021-04-22
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
姬国勋,代星
作者简介:
梁苏卓成(1997—),男,硕士研究生,基金资助:
LIANG-SU Zhuocheng1(),JI Guoxun1(),SUN Xinli1,WANG Bo3,ZHANG Shitong2,DAI Xing2()
Received:
2021-01-08
Revised:
2021-04-22
Online:
2021-06-05
Published:
2021-06-05
Contact:
JI Guoxun,DAI Xing
摘要:
将Si引入冠醚有希望大幅度提升其对阳离子的络合能力,但其中的调控机理尚不清晰。基于量子化学密度泛函理论计算,以12-冠-4、1,1-2甲基-1-硅杂12-冠-4、1,1,2,2-4甲基-1,2-2硅杂12-冠-4、1,1,2,2,4,4,5,5-8甲基-1,2,4,5-4硅杂12-冠-4和1,1,2,2,7,7,8,8-8甲基-1,2,7,8-4硅杂12-冠-4络合Li+为计算模型,探究了冠醚与Li+之间的相互作用机理。结果表明,由于O—Li+配位键的键长增加,掺杂Si的数量为2和4的Si杂12-冠-4对Li+的共价相互作用略弱,但静电相互作用和色散相互作用更强、Pauli排斥作用更小,最终导致所有Si杂12-冠-4对Li+的络合能力都比12-冠-4更强。上述有利因素源于Si—O键中Si的电子显著向O极化,同时,Si杂12-冠-4中—SiMe2—SiMe2—和—CH2—SiMe2—单元远离Li+,有效避免了Si—Li+之间的静电排斥。揭示的冠醚-Li+相互作用机理将为未来设计与合成杂原子冠醚提供理论指导。
中图分类号:
梁苏卓成, 姬国勋, 孙新利, 王波, 张仕通, 代星. 硅杂原子提升冠醚对锂离子络合能力的机理理论研究[J]. 化工学报, 2021, 72(6): 3149-3159.
LIANG-SU Zhuocheng, JI Guoxun, SUN Xinli, WANG Bo, ZHANG Shitong, DAI Xing. Theoretical study on mechanism of silicon heteroatoms to improve the complexation ability of crown ethers to lithium ions[J]. CIESC Journal, 2021, 72(6): 3149-3159.
键 | 距离/? | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
L | L-Li+ | LSi/C | LSi/C-Li+ | LSi | LSi-Li+ | LSi-O | LSi-O-Li+ | LSi-M | LSi-M-Li+ | |
C—C | 1.517 | 1.525 | 1.519 | 1.523 | 1.517 | 1.520 | 1.516 | 1.515 | 1.521 | 1.519 |
C—O | 1.404 | 1.430 | 1.409 | 1.429 | 1.402 | 1.426 | 1.404 | 1.422 | 1.404 | 1.425 |
Si—O | — | — | 1.689 | 1.724 | 1.694 | 1.733 | 1.685 | 1.726 | 1.691 | 1.725 |
Si—Si | — | — | — | — | 2.355 | 2.371 | 2.351 | 2.350 | 2.355 | 2.356 |
Si—C | — | — | 1.875 | 1.863 | 1.885 | 1.873 | 1.885 | 1.876 | 1.887 | 1.875 |
C—Li+ | — | 2.646 | — | 2.689 | — | 2.740 | — | 2.859 | — | 2.794 |
Si—Li+ | — | — | — | 2.930 | — | 3.075 | — | 3.176 | — | 3.217 |
O1—Li+ | — | 1.872 | — | 1.724 | — | 1.892 | — | 1.990 | — | 1.955 |
O2—Li+ | — | 1.887 | — | 1.893 | — | 1.944 | — | 1.975 | — | 1.955 |
O3—Li+ | — | 1.872 | — | 1.909 | — | 1.944 | — | 2.037 | — | 1.955 |
O4—Li+ | — | 1.887 | — | 1.865 | — | 1.892 | — | 1.964 | — | 1.955 |
O—Li+ | — | 1.880 | — | 1.848 | — | 1.918 | — | 1.991 | — | 1.955 |
表1 自由冠醚及相应的冠醚-Li+络合物的结构参数
Table 1 Geometrical parameters of the free crown ethers and the crown-Li+ complexes
键 | 距离/? | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
L | L-Li+ | LSi/C | LSi/C-Li+ | LSi | LSi-Li+ | LSi-O | LSi-O-Li+ | LSi-M | LSi-M-Li+ | |
C—C | 1.517 | 1.525 | 1.519 | 1.523 | 1.517 | 1.520 | 1.516 | 1.515 | 1.521 | 1.519 |
C—O | 1.404 | 1.430 | 1.409 | 1.429 | 1.402 | 1.426 | 1.404 | 1.422 | 1.404 | 1.425 |
Si—O | — | — | 1.689 | 1.724 | 1.694 | 1.733 | 1.685 | 1.726 | 1.691 | 1.725 |
Si—Si | — | — | — | — | 2.355 | 2.371 | 2.351 | 2.350 | 2.355 | 2.356 |
Si—C | — | — | 1.875 | 1.863 | 1.885 | 1.873 | 1.885 | 1.876 | 1.887 | 1.875 |
C—Li+ | — | 2.646 | — | 2.689 | — | 2.740 | — | 2.859 | — | 2.794 |
Si—Li+ | — | — | — | 2.930 | — | 3.075 | — | 3.176 | — | 3.217 |
O1—Li+ | — | 1.872 | — | 1.724 | — | 1.892 | — | 1.990 | — | 1.955 |
O2—Li+ | — | 1.887 | — | 1.893 | — | 1.944 | — | 1.975 | — | 1.955 |
O3—Li+ | — | 1.872 | — | 1.909 | — | 1.944 | — | 2.037 | — | 1.955 |
O4—Li+ | — | 1.887 | — | 1.865 | — | 1.892 | — | 1.964 | — | 1.955 |
O—Li+ | — | 1.880 | — | 1.848 | — | 1.918 | — | 1.991 | — | 1.955 |
系统 | 配位键 | ρ/a.u. | ?2ρ/a.u. | H/a.u. | |V|/G |
---|---|---|---|---|---|
L-Li+ | O1—Li+ | 0.0357 | 0.2554 | 0.0120 | 0.766 |
O2—Li+ | 0.0344 | 0.2412 | 0.0112 | 0.770 | |
O3—Li+ | 0.0357 | 0.2554 | 0.0120 | 0.766 | |
O4—Li+ | 0.0344 | 0.2413 | 0.0112 | 0.771 | |
LSi/C-Li+ | O1—Li+ | 0.0341 | 0.2404 | 0.0111 | 0.771 |
O2—Li+ | 0.0338 | 0.2367 | 0.0110 | 0.769 | |
O3—Li+ | 0.0323 | 0.2241 | 0.0103 | 0.771 | |
O4—Li+ | 0.0362 | 0.2605 | 0.0123 | 0.767 | |
LSi-Li+ | O1—Li+ | 0.0332 | 0.2339 | 0.0110 | 0.768 |
O2—Li+ | 0.0294 | 0.1987 | 0.0091 | 0.775 | |
O3—Li+ | 0.0293 | 0.1985 | 0.0090 | 0.775 | |
O4—Li+ | 0.0332 | 0.2343 | 0.0110 | 0.768 | |
LSi-O-Li+ | O1—Li+ | 0.0254 | 0.1651 | 0.0073 | 0.782 |
O2—Li+ | 0.0265 | 0.1755 | 0.0080 | 0.777 | |
O3—Li+ | 0.0228 | 0.1460 | 0.0063 | 0.787 | |
O4—Li+ | 0.0271 | 0.1810 | 0.0084 | 0.773 | |
LSi-M-Li+ | O1—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 |
O2—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 | |
O3—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 | |
O4—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 |
表2 O—Li+配位键BCP处电子密度拓扑性质
Table 2 Topological electron density properties at critical points of the O—Li+
系统 | 配位键 | ρ/a.u. | ?2ρ/a.u. | H/a.u. | |V|/G |
---|---|---|---|---|---|
L-Li+ | O1—Li+ | 0.0357 | 0.2554 | 0.0120 | 0.766 |
O2—Li+ | 0.0344 | 0.2412 | 0.0112 | 0.770 | |
O3—Li+ | 0.0357 | 0.2554 | 0.0120 | 0.766 | |
O4—Li+ | 0.0344 | 0.2413 | 0.0112 | 0.771 | |
LSi/C-Li+ | O1—Li+ | 0.0341 | 0.2404 | 0.0111 | 0.771 |
O2—Li+ | 0.0338 | 0.2367 | 0.0110 | 0.769 | |
O3—Li+ | 0.0323 | 0.2241 | 0.0103 | 0.771 | |
O4—Li+ | 0.0362 | 0.2605 | 0.0123 | 0.767 | |
LSi-Li+ | O1—Li+ | 0.0332 | 0.2339 | 0.0110 | 0.768 |
O2—Li+ | 0.0294 | 0.1987 | 0.0091 | 0.775 | |
O3—Li+ | 0.0293 | 0.1985 | 0.0090 | 0.775 | |
O4—Li+ | 0.0332 | 0.2343 | 0.0110 | 0.768 | |
LSi-O-Li+ | O1—Li+ | 0.0254 | 0.1651 | 0.0073 | 0.782 |
O2—Li+ | 0.0265 | 0.1755 | 0.0080 | 0.777 | |
O3—Li+ | 0.0228 | 0.1460 | 0.0063 | 0.787 | |
O4—Li+ | 0.0271 | 0.1810 | 0.0084 | 0.773 | |
LSi-M-Li+ | O1—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 |
O2—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 | |
O3—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 | |
O4—Li+ | 0.0278 | 0.1884 | 0.0087 | 0.773 |
计算级别 | 能量/(kcal/mol) | 系统 | |||||
---|---|---|---|---|---|---|---|
泛函 | 基组 | L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | |
B3LYP-D3(BJ) | Def2QZVP | ΔEint | -104.83 | -112.26 | -118.53 | -124.46 | -129.12 |
ΔEgeom | 11.26 | 16.72 | 19.28 | 23.73 | 23.57 | ||
BLYP-D3(BJ) | QZ4P | ΔEint (Total) | -102.17 | -109.60 | -116.03 | -122.20 | -126.68 |
ΔEels | -73.37 | -77.68 | -79.59 | -77.67 | -84.22 | ||
ΔEorb | -60.55 | -61.38 | -60.54 | -58.37 | -59.74 | ||
ΔEPauli | 40.23 | 38.70 | 33.76 | 24.42 | 27.83 | ||
ΔEdisp | -8.49 | -9.23 | -9.65 | -10.58 | -10.55 | ||
B3LYP-D3(BJ) | TZP | ΔEint (Total) | -105.94 | -113.28 | -119.41 | -125.19 | -129.74 |
ΔEels | -76.08 | -80.92 | -82.34 | -81.64 | -86.80 | ||
ΔEorb | -62.55 | -63.06 | -62.68 | -59.28 | -62.04 | ||
ΔEPauli | 39.73 | 38.38 | 33.68 | 24.65 | 27.98 | ||
ΔEdisp | -7.03 | -7.69 | -8.07 | -8.91 | -8.88 |
表3 冠醚-Li+相互作用能及能量分解
Table 3 Crown-Li+ interaction energies and energy decompositions
计算级别 | 能量/(kcal/mol) | 系统 | |||||
---|---|---|---|---|---|---|---|
泛函 | 基组 | L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | |
B3LYP-D3(BJ) | Def2QZVP | ΔEint | -104.83 | -112.26 | -118.53 | -124.46 | -129.12 |
ΔEgeom | 11.26 | 16.72 | 19.28 | 23.73 | 23.57 | ||
BLYP-D3(BJ) | QZ4P | ΔEint (Total) | -102.17 | -109.60 | -116.03 | -122.20 | -126.68 |
ΔEels | -73.37 | -77.68 | -79.59 | -77.67 | -84.22 | ||
ΔEorb | -60.55 | -61.38 | -60.54 | -58.37 | -59.74 | ||
ΔEPauli | 40.23 | 38.70 | 33.76 | 24.42 | 27.83 | ||
ΔEdisp | -8.49 | -9.23 | -9.65 | -10.58 | -10.55 | ||
B3LYP-D3(BJ) | TZP | ΔEint (Total) | -105.94 | -113.28 | -119.41 | -125.19 | -129.74 |
ΔEels | -76.08 | -80.92 | -82.34 | -81.64 | -86.80 | ||
ΔEorb | -62.55 | -63.06 | -62.68 | -59.28 | -62.04 | ||
ΔEPauli | 39.73 | 38.38 | 33.68 | 24.65 | 27.98 | ||
ΔEdisp | -7.03 | -7.69 | -8.07 | -8.91 | -8.88 |
图3 电子密度差图和电子密度范德华表面(isodensity = 0.001 a.u.)的静电势分布图。左:电子密度差图(isovalue = 0.006 a.u.),绿色和蓝色区域分别代表电子密度的积聚和衰减;中:形变后的冠醚分子的电子密度范德华表面的静电势分布图;右:O对分子的电子密度范德华表面的静电势分布的贡献
Fig.3 Electron density difference diagrams and electrostatic potential distributions on the electron density van der Waals surface (isodensity = 0.001 a.u.)
项目 | NPA/e | Mulliken/e | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | |
Li+ | 0.861 | 0.868 | 0.872 | 0.893 | 0.893 | 0.548 | 0.551 | 0.574 | 0.590 | 0.597 |
O(total) | -2.726 | -3.022 | -3.316 | -3.905 | -3.924 | -1.964 | -2.088 | -2.196 | -2.389 | -2.408 |
O1 | -0.682 | -0.989 | -0.985 | -1.273 | -0.981 | -0.493 | -0.617 | -0.618 | -0.715 | -0.602 |
O2 | -0.681 | -0.678 | -0.673 | -0.983 | -0.981 | -0.489 | -0.488 | -0.480 | -0.606 | -0.602 |
O3 | -0.682 | -0.677 | -0.673 | -0.666 | -0.981 | -0.493 | -0.486 | -0.480 | -0.461 | -0.602 |
O4 | -0.681 | -0.678 | -0.985 | -0.983 | -0.981 | -0.489 | -0.497 | -0.618 | -0.607 | -0.602 |
Si | — | 1.952 | 1.483 | 1.481 | 1.486 | — | 0.646 | 0.488 | 0.499 | 0.490 |
表4 冠醚-锂离子络合物中的电荷布居
Table 4 Population analysis of crown-Li+ complexes
项目 | NPA/e | Mulliken/e | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | L-Li+ | LSi/C-Li+ | LSi-Li+ | LSi-O-Li+ | LSi-M-Li+ | |
Li+ | 0.861 | 0.868 | 0.872 | 0.893 | 0.893 | 0.548 | 0.551 | 0.574 | 0.590 | 0.597 |
O(total) | -2.726 | -3.022 | -3.316 | -3.905 | -3.924 | -1.964 | -2.088 | -2.196 | -2.389 | -2.408 |
O1 | -0.682 | -0.989 | -0.985 | -1.273 | -0.981 | -0.493 | -0.617 | -0.618 | -0.715 | -0.602 |
O2 | -0.681 | -0.678 | -0.673 | -0.983 | -0.981 | -0.489 | -0.488 | -0.480 | -0.606 | -0.602 |
O3 | -0.682 | -0.677 | -0.673 | -0.666 | -0.981 | -0.493 | -0.486 | -0.480 | -0.461 | -0.602 |
O4 | -0.681 | -0.678 | -0.985 | -0.983 | -0.981 | -0.489 | -0.497 | -0.618 | -0.607 | -0.602 |
Si | — | 1.952 | 1.483 | 1.481 | 1.486 | — | 0.646 | 0.488 | 0.499 | 0.490 |
1 | Awual M R. Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater[J]. Chemical Engineering Journal, 2016, 303: 539-546. |
2 | Carreira-Barral I, Rodríguez-Rodríguez A, Regueiro-Figueroa M, et al. A merged experimental and theoretical conformational study on alkaline-earth complexes with lariat ethers derived from 4, 13-diaza-18-crown-6[J]. Inorganica Chimica Acta, 2011, 370(1): 270-278. |
3 | 王晓晨,王英明,刘威,等. 12-冠-4对非质子Li-O2电池氧电极的影响[J]. 物理化学学报, 2016, 32(1): 343-348. |
Wang X C, Wang Y M, Liu W, et al. Influence of 12-crown-4 on oxygen electrode of aprotic Li-O2 battery[J]. Acta Physico-Chimica Sinica, 2016, 32(1): 343-348. | |
4 | 赵岩, 敖银勇, 陈建, 等. 基于密度泛函理论研究锂-冠醚复合物的结构和热力学参数[J]. 物理化学学报, 2016, 32(7): 1681-1690. |
Zhao Y, Ao Y Y, Chen J, et al. Density functional theory studies of the structures and thermodynamic parameters of Li+-crown ether complexes[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1681-1690. | |
5 | Hay B P, Rustad J R. Structural criteria for the rational design of selective ligands: extension of the MM3 force field to aliphatic ether complexes of the alkali and alkaline earth cations[J]. Journal of the American Chemical Society, 1994, 116(14): 6316-6326. |
6 | Schultz R A, Dishong D M, Gokel G W. Lariat ethers(3): Macrocylic polyethers bearing donor groups on flexible arms attached at a nitrogen pivot point[J]. Tetrahedron Letters, 1981, 22(28): 2623-2626. |
7 | Arif A M, Yousaf A, Xu H L, et al. N-(O-methoxyphenyl)aza-15-crown-5-ether derivatives: highly efficient and wide range nonlinear optical response based cation recognition[J]. Journal of Molecular Liquids, 2020, 301: 112492. |
8 | Dong G C, Duan K F, Zhang Q, et al. A new colorimetric and fluorescent chemosensor based on Schiff base-phenyl-crown ether for selective detection of Al3+ and Fe3+[J]. Inorganica Chimica Acta, 2019, 487: 322-330. |
9 | Zhang Q, Ma R F, Li Z Y, et al. A multi-responsive crown ether-based colorimetric/fluorescent chemosensor for highly selective detection of Al3+, Cu2+ and Mg2+[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 228: 117857. |
10 | Reuter K, Dankert F, Donsbach C, et al. Structural study of mismatched disila-crown ether complexes[J]. Inorganics, 2017, 5(1): 11. |
11 | Dankert F, Donsbach C, Rienmüller J, et al. Alkaline earth metal template (cross-)coupling reactions with hybrid disila-crown ether analogues[J]. Chemistry - A European Journal, 2019, 25(69): 15934-15943. |
12 | Dankert F, Reuter K, Donsbach C, et al. Hybrid disila-crown ethers as hosts for ammonium cations: the O–Si–Si–O linkage as an acceptor for hydrogen bonding[J]. Inorganics, 2018, 6(1): 15. |
13 | Weinhold F, West R. The nature of the silicon-oxygen bond[J]. Organometallics, 2011, 30(21): 5815-5824. |
14 | Passmore J, Rautiainen J M. On the lower Lewis basicity of siloxanes compared to ethers[J]. European Journal of Inorganic Chemistry, 2012, 2012(36): 6002-6010. |
15 | Cameron T S, Decken A, Krossing I, et al. Reactions of a cyclodimethylsiloxane (Me2SiO)6 with silver salts of weakly coordinating anions; crystal structures of [Ag(Me2SiO)6][Al] ([Al] = [FAl{OC(CF3)3}3], [Al{OC(CF3)3}4]) and their comparison with [Ag(18-crown-6)]2[SbF6]2[J]. Inorganic Chemistry, 2013, 52(6): 3113-3126. |
16 | Reuter K, Buchner M R, Thiele G, et al. Stable alkali-metal complexes of hybrid disila-crown ethers[J]. Inorganic Chemistry, 2016, 55(9): 4441-4447. |
17 | Reuter K, Thiele G, Hafner T, et al. Synthesis and coordination ability of a partially silicon based crown ether[J]. Chemical Communications (Cambridge, England), 2016, 52(90): 13265-13268. |
18 | Dankert F, Reuter K, Donsbach C, et al. A structural study of alkaline earth metal complexes with hybrid disila-crown ethers[J]. Dalton Transactions, 2017, 46(27): 8727-8735. |
19 | 唐伟强, 谢鹏, 徐小飞, 等. 反应密度泛函理论的构建与初步应用[J]. 化工学报, 2021, 72(2): 633-652. |
Tang W Q, Xie P, Xu X F, et al. Development and applications of reaction density functional theory[J]. CIESC Journal, 2021, 72(2): 633-652. | |
20 | Zhang Y, Wang X Y, Luo B H, et al. DFT study of crown ether-bridged Z-stilbenes and their complexes with alkali metal cations[J]. Journal of Organometallic Chemistry, 2012, 699: 31-38. |
21 | Despotović I. On the metal ion selectivity of PNP-lariat ether: an insight from density functional theory calculations[J]. Structural Chemistry, 2020, 31(5): 1801-1819. |
22 | Choi C M, Heo J, Kim N J. Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: a density functional theory study using a continuum solvation model[J]. Chem. Cent. J., 2012, 6(1): 84. |
23 | Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, General Physics, 1988, 38(6): 3098-3100. |
24 | Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, Condensed Matter, 1988, 37(2): 785-789. |
25 | Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627. |
26 | Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465. |
27 | Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305. |
28 | Weigend F. Accurate Coulomb-fitting basis sets for H to Rn[J]. Physical Chemistry Chemical Physics, 2006, 8(9): 1057-1065. |
29 | Bader R W F. Atoms in Molecules. A Quantum Theory[M]. New York: Oxford University Press, 1990. |
30 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
31 | Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics, 1970, 19(4): 553-566. |
32 | Reed A E, Weinstock R B, Weinhold F. Natural population analysis[J]. The Journal of Chemical Physics, 1985, 83(2): 735-746. |
33 | Mulliken R S. Electronic population analysis on LCAO–MO molecular wave functions(Ⅰ) [J]. The Journal of Chemical Physics, 1955, 23(10): 1833-1840. |
34 | Mulliken R S. Electronic population analysis on LCAO–MO molecular wave functions(Ⅱ): Overlap populations, bond orders, and covalent bond energies[J]. The Journal of Chemical Physics, 1955, 23(10): 1841-1846. |
35 | Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions(Ⅲ): Effects of hybridization on overlap and gross AO populations[J]. The Journal of Chemical Physics, 1955, 23(12): 2338-2342. |
36 | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
37 | Bickelhaupt F M, Baerends E J. Kohn-Sham density functional theory: predicting and understanding chemistry[M]//Reviews in Computational Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007: 1-86. |
38 | Ziegler T, Rauk A. On the calculation of bonding energies by the Hartree Fock Slater method[J]. Theoretica Chimica Acta, 1977, 46(1): 1-10. |
39 | Ziegler T, Rauk A. CO, CS, N2, PF3, and CNCH3 as CT donors and T acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method[J]. Inorg. Chem., 1979, 18(7): 1755-1759. |
40 | te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9): 931-967. |
41 | van Lenthe E, Baerends E J. Optimized Slater-type basis sets for the elements 1—118[J]. Journal of Computational Chemistry, 2003, 24(9): 1142-1156. |
42 | Zhao Y, Schultz N E, Truhlar D G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions[J]. Journal of Chemical Theory and Computation, 2006, 2(2): 364-382. |
43 | Petersson G A, Bennett A, Tensfeldt T G, et al. A complete basis set model chemistry(Ⅰ): The total energies of closed-shell atoms and hydrides of the first-row elements[J]. The Journal of Chemical Physics, 1988, 89(4): 2193-2218. |
44 | Petersson G A, Al-Laham M A. A complete basis set model chemistry(Ⅱ): Open-shell systems and the total energies of the first-row atoms[J]. The Journal of Chemical Physics, 1991, 94(9): 6081-6090. |
45 | Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. |
46 | Groth P, Møllendal H, Seip R, et al. On the crystal structure of the (1∶1) complex between lithium thiocyanate and 1, 4, 7, 10-tetraoxacyclododecane at room temperature[J]. Acta Chemica Scandinavica, 1981, 35a: 463-465. |
47 | Cremer D, Kraka E.A description of the chemical bond in terms of local properties of electron density and energy[J]. Croatica Chemica Acta, 1985, 57(6):1259-1281. |
48 | Vener M V, Manaev A V, Egorova A N, et al. QTAIM study of strong H-bonds with the O-H···A fragment (A = O, N) in three-dimensional periodical crystals[J]. The Journal of Physical Chemistry A, 2007, 111(6): 1155-1162. |
49 | Espinosa E, Alkorta I, Elguero J, et al. From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y systems[J]. The Journal of Chemical Physics, 2002, 117(12): 5529-5542. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[6] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[7] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[8] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[9] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[10] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[11] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[14] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[15] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 239
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 588
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||