化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5344-5353.DOI: 10.11949/0438-1157.20210502
王玉1,2(),余广炜1,3(),江汝清1,2,林佳佳1,2,汪印1
收稿日期:
2021-04-13
修回日期:
2021-07-02
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
余广炜
作者简介:
王玉(1996—),男,硕士研究生,基金资助:
Yu WANG1,2(),Guangwei YU1,3(),Ruqing JIANG1,2,Jiajia LIN1,2,Yin WANG1
Received:
2021-04-13
Revised:
2021-07-02
Online:
2021-10-05
Published:
2021-10-05
Contact:
Guangwei YU
摘要:
以3种粒径餐厨沼渣为原料,在600℃下热解制备生物炭,研究粒径对沼渣(BR)及生物炭(BRC)中磷和重金属的影响,并采用TCLP浸出毒性和重金属潜在生态风险评估对其安全性进行系统研究。结果表明:BR及BRC中的磷主要以酸溶态磷(HCl-P)为主,残渣态磷(Res-P)次之,其余磷形态含量较低,总磷含量均呈现出随粒径增大而降低的趋势。热解促进H2O-P、NaHCO3-P和NaOH-P向HCl-P和Res-P转化。随着粒径的增大,BR中Cu、Zn总量增加,Cr减少,BRC中的Cr、As总量增加,Zn、Pb减少。并且BR中Cr、Zn、Pb和As中可氧化态和残渣态F3+F4随粒径增大而减少;BRC中Cr、Pb、As中F3+F4随粒径增大而减少,而Cu、Zn、Cd与之相反。TCLP浸出毒性和重金属潜在生态风险评估结果表明BR及BRC中重金属均属于低风险水平。
中图分类号:
王玉,余广炜,江汝清,林佳佳,汪印. 粒径对餐厨沼渣热解制备生物炭中磷和重金属的影响[J]. 化工学报, 2021, 72(10): 5344-5353.
Yu WANG,Guangwei YU,Ruqing JIANG,Jiajia LIN,Yin WANG. Effect of particle size on phosphorus and heavy metals during the preparation of biochar from food waste biogas residue[J]. CIESC Journal, 2021, 72(10): 5344-5353.
Cf | 单一重金属污染程度 | Er | 单项潜在生态风险程度 | RI | 重金属潜在风险程度 |
---|---|---|---|---|---|
Cf≤1 | Er≤40 | RI≤150 | |||
1<Cf≤3 | 40<Er≤80 | 150<RI≤300 | |||
3<Cf≤6 | 80<Er≤160 | 300<RI≤600 | |||
6<Cf≤9 | 160<Er≤320 | RI>600 | |||
Cf>9 | Er>320 |
表1 潜在生态风险评估指标
Table 1 Indices of potential ecological risk assessment
Cf | 单一重金属污染程度 | Er | 单项潜在生态风险程度 | RI | 重金属潜在风险程度 |
---|---|---|---|---|---|
Cf≤1 | Er≤40 | RI≤150 | |||
1<Cf≤3 | 40<Er≤80 | 150<RI≤300 | |||
3<Cf≤6 | 80<Er≤160 | 300<RI≤600 | |||
6<Cf≤9 | 160<Er≤320 | RI>600 | |||
Cf>9 | Er>320 |
样品 | 产率/% | 工业分析/% (质量) | 元素分析/% (质量) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
灰分(Ash) | 挥发分(VM) | 固定碳(FC) | C | H | N | S | H/C | C/N | ||
BR1 | — | 62.67 | 32.11 | 5.22 | 18.55 | 2.67 | 1.8 | 0.73 | 0.14 | 10.31 |
BR2 | — | 56.48 | 41.18 | 2.34 | 20.00 | 2.53 | 2.06 | 0.81 | 0.13 | 9.73 |
BR3 | — | 52.55 | 43.01 | 4.43 | 21.29 | 3.04 | 2.28 | 0.76 | 0.14 | 9.33 |
BRC1 | 74.78 | 81.71 | 14.73 | 3.56 | 12.01 | 2.08 | 0.55 | 0.48 | 0.17 | 21.95 |
BRC2 | 72.59 | 79.34 | 17.08 | 3.58 | 12.29 | 2.05 | 0.63 | 0.64 | 0.17 | 19.49 |
BRC3 | 65.47 | 76.98 | 20.83 | 2.19 | 13.23 | 1.47 | 0.70 | 0.54 | 0.11 | 18.95 |
表2 沼渣及沼渣生物炭的工业分析和元素分析
Table 2 Physicochemical properties of BR and BRC
样品 | 产率/% | 工业分析/% (质量) | 元素分析/% (质量) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
灰分(Ash) | 挥发分(VM) | 固定碳(FC) | C | H | N | S | H/C | C/N | ||
BR1 | — | 62.67 | 32.11 | 5.22 | 18.55 | 2.67 | 1.8 | 0.73 | 0.14 | 10.31 |
BR2 | — | 56.48 | 41.18 | 2.34 | 20.00 | 2.53 | 2.06 | 0.81 | 0.13 | 9.73 |
BR3 | — | 52.55 | 43.01 | 4.43 | 21.29 | 3.04 | 2.28 | 0.76 | 0.14 | 9.33 |
BRC1 | 74.78 | 81.71 | 14.73 | 3.56 | 12.01 | 2.08 | 0.55 | 0.48 | 0.17 | 21.95 |
BRC2 | 72.59 | 79.34 | 17.08 | 3.58 | 12.29 | 2.05 | 0.63 | 0.64 | 0.17 | 19.49 |
BRC3 | 65.47 | 76.98 | 20.83 | 2.19 | 13.23 | 1.47 | 0.70 | 0.54 | 0.11 | 18.95 |
样品 | 含量/(mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na | Mg | Al | Si | S | Cl | K | Ca | Fe | |
BR1 | 7.33 | 6.67 | 11.91 | 15.27 | 6.15 | 23.90 | 3.95 | 338.4 | 10.81 |
BR2 | 7.44 | 5.58 | 10.85 | 13.89 | 6.58 | 24.57 | 3.97 | 306.5 | 10.59 |
BR3 | 8.68 | 4.92 | 9.12 | 11.32 | 5.18 | 28.15 | 4.10 | 266.5 | 10.60 |
BRC1 | 10.70 | 8.01 | 14.12 | 17.66 | 7.36 | 33.78 | 5.58 | 389.5 | 11.70 |
BRC2 | 10.68 | 7.78 | 12.97 | 17.50 | 6.66 | 45.03 | 6.84 | 377.1 | 12.45 |
BRC3 | 9.70 | 4.94 | 7.58 | 10.03 | 3.60 | 33.87 | 5.63 | 297.7 | 11.37 |
表3 不同粒径沼渣热解前后矿物元素含量
Table 3 The content of mineral elements of BR and BRC
样品 | 含量/(mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Na | Mg | Al | Si | S | Cl | K | Ca | Fe | |
BR1 | 7.33 | 6.67 | 11.91 | 15.27 | 6.15 | 23.90 | 3.95 | 338.4 | 10.81 |
BR2 | 7.44 | 5.58 | 10.85 | 13.89 | 6.58 | 24.57 | 3.97 | 306.5 | 10.59 |
BR3 | 8.68 | 4.92 | 9.12 | 11.32 | 5.18 | 28.15 | 4.10 | 266.5 | 10.60 |
BRC1 | 10.70 | 8.01 | 14.12 | 17.66 | 7.36 | 33.78 | 5.58 | 389.5 | 11.70 |
BRC2 | 10.68 | 7.78 | 12.97 | 17.50 | 6.66 | 45.03 | 6.84 | 377.1 | 12.45 |
BRC3 | 9.70 | 4.94 | 7.58 | 10.03 | 3.60 | 33.87 | 5.63 | 297.7 | 11.37 |
样品 | 总磷TP/(mg/g) | 无机磷IP/(mg/g) | 有机磷OP/(mg/g) |
---|---|---|---|
BR1 | 19.484±0.443 | 18.437±0.469 | 0.932±0.012 |
BR2 | 18.544±0.221 | 17.120±0.379 | 0.908±0.020 |
BR3 | 16.349±0.384 | 15.526±0.358 | 0.881±0.017 |
BRC1 | 26.225±0.768 | 25.337±0.704 | 0.416±0.033 |
BRC2 | 25.754±0.384 | 25.128±0.191 | 0.316±0.006 |
BRC3 | 24.814±0.394 | 24.560±0.307 | 0.281±0.010 |
表4 沼渣及沼渣生物炭中总磷、无机磷和有机磷含量
Table 4 The content of total phosphorus, inorganic phosphorus and organic phosphorus in BR and BRC
样品 | 总磷TP/(mg/g) | 无机磷IP/(mg/g) | 有机磷OP/(mg/g) |
---|---|---|---|
BR1 | 19.484±0.443 | 18.437±0.469 | 0.932±0.012 |
BR2 | 18.544±0.221 | 17.120±0.379 | 0.908±0.020 |
BR3 | 16.349±0.384 | 15.526±0.358 | 0.881±0.017 |
BRC1 | 26.225±0.768 | 25.337±0.704 | 0.416±0.033 |
BRC2 | 25.754±0.384 | 25.128±0.191 | 0.316±0.006 |
BRC3 | 24.814±0.394 | 24.560±0.307 | 0.281±0.010 |
样品 | 重金属总量/(mg/kg) | ||||||
---|---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | ||
BR1 | 65.20±2.33 | 14.36±1.33 | 38.08±0.81 | 0.96±0.02 | 5.04±0.55 | 7.31±0.14 | |
BR2 | 72.85±3.03 | 19.46±0.27 | 52.47±1.04 | 1.05±0.01 | 6.29±0.27 | 7.26±0.04 | |
BR3 | 71.72±1.60 | 20.84±0.47 | 58.15±4.57 | 1.03±0.02 | 6.00±0.26 | 7.88±0.10 | |
BRC1 | 78.86±2.84 | 17.98±0.15 | 74.92±1.99 | 0.18±0.01 | 5.59±0.23 | 7.44±0.13 | |
BRC2 | 83.34±0.84 | 19.53±0.27 | 74.42±4.24 | 0.22±0.01 | 4.98±0.19 | 9.04±0.10 | |
BRC3 | 86.46±4.05 | 17.87±0.82 | 70.18±2.73 | 0.19±0.02 | 4.61±0.26 | 11.93±0.07 | |
绿化种植土壤标准 (CJ/T340—2011(Ⅲ)) | pH<6.5 | 200 | 300 | 400 | 0.8 | 350 | 40 |
pH≥6.5 | 250 | 350 | 450 | 1.0 | 400 | 35 |
表5 不同粒径热解前后重金属总量
Table 5 Concentration of heavy metals before and after pyrolysis of different particle sizes
样品 | 重金属总量/(mg/kg) | ||||||
---|---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | ||
BR1 | 65.20±2.33 | 14.36±1.33 | 38.08±0.81 | 0.96±0.02 | 5.04±0.55 | 7.31±0.14 | |
BR2 | 72.85±3.03 | 19.46±0.27 | 52.47±1.04 | 1.05±0.01 | 6.29±0.27 | 7.26±0.04 | |
BR3 | 71.72±1.60 | 20.84±0.47 | 58.15±4.57 | 1.03±0.02 | 6.00±0.26 | 7.88±0.10 | |
BRC1 | 78.86±2.84 | 17.98±0.15 | 74.92±1.99 | 0.18±0.01 | 5.59±0.23 | 7.44±0.13 | |
BRC2 | 83.34±0.84 | 19.53±0.27 | 74.42±4.24 | 0.22±0.01 | 4.98±0.19 | 9.04±0.10 | |
BRC3 | 86.46±4.05 | 17.87±0.82 | 70.18±2.73 | 0.19±0.02 | 4.61±0.26 | 11.93±0.07 | |
绿化种植土壤标准 (CJ/T340—2011(Ⅲ)) | pH<6.5 | 200 | 300 | 400 | 0.8 | 350 | 40 |
pH≥6.5 | 250 | 350 | 450 | 1.0 | 400 | 35 |
样品 | 重金属浸出量/(mg/L) | |||||
---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | |
BR1 | 0.038±0.001 | 0.131±0.012 | 0.036±0.011 | 0.004±0.000 | 0.000±0.000 | 0.090±0.004 |
BR2 | 0.059±0.007 | 0.180±0.007 | 0.032±0.004 | 0.004±0.001 | 0.000±0.000 | 0.135±0.009 |
BR3 | 0.054±0.002 | 0.279±0.037 | 0.038±0.005 | 0.003±0.000 | 0.000±0.000 | 0.159±0.001 |
BRC1 | 0.078±0.008 | 0.006±0.002 | 0.044±0.007 | 0.002±0.000 | 0.001±0.000 | 0.020±0.002 |
BRC2 | 0.090±0.008 | 0.005±0.002 | 0.039±0.014 | 0.003±0.000 | 0.001±0.000 | 0.033±0.002 |
BRC3 | 0.096±0.003 | 0.004±0.000 | 0.049±0.017 | 0.004±0.000 | 0.001±0.000 | 0.036±0.001 |
阈值① | 5 | — | 5 | 1 | 5 | 5 |
表6 不同粒径沼渣及其生物炭中重金属的TCLP浸出浓度
Table 6 Leaching concentrations of heavy metals in the different mesh of BR and BRC for TCLP tests
样品 | 重金属浸出量/(mg/L) | |||||
---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | |
BR1 | 0.038±0.001 | 0.131±0.012 | 0.036±0.011 | 0.004±0.000 | 0.000±0.000 | 0.090±0.004 |
BR2 | 0.059±0.007 | 0.180±0.007 | 0.032±0.004 | 0.004±0.001 | 0.000±0.000 | 0.135±0.009 |
BR3 | 0.054±0.002 | 0.279±0.037 | 0.038±0.005 | 0.003±0.000 | 0.000±0.000 | 0.159±0.001 |
BRC1 | 0.078±0.008 | 0.006±0.002 | 0.044±0.007 | 0.002±0.000 | 0.001±0.000 | 0.020±0.002 |
BRC2 | 0.090±0.008 | 0.005±0.002 | 0.039±0.014 | 0.003±0.000 | 0.001±0.000 | 0.033±0.002 |
BRC3 | 0.096±0.003 | 0.004±0.000 | 0.049±0.017 | 0.004±0.000 | 0.001±0.000 | 0.036±0.001 |
阈值① | 5 | — | 5 | 1 | 5 | 5 |
样品 | 单一金属污染系数Cf | 单项潜在生态风险系数Er | 重金属潜在生态风险指数RI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | Cr | Cu | Zn | Cd | Pb | As | ||
BR1 | 0.421 | 1.798 | 0.375 | 1.529 | 0.008 | 1.434 | 0.842 | 8.991 | 0.375 | 45.875 | 0.041 | 14.338 | 70.462 |
BR2 | 0.473 | 1.852 | 0.342 | 1.825 | 0.004 | 2.456 | 0.947 | 9.262 | 0.342 | 54.743 | 0.021 | 24.561 | 89.875 |
BR3 | 0.437 | 2.297 | 0.410 | 2.110 | 0.005 | 2.882 | 0.874 | 11.486 | 0.410 | 63.310 | 0.026 | 28.816 | 104.921 |
BRC1 | 0.356 | 1.512 | 1.143 | 1.920 | 0.022 | 0.942 | 0.712 | 7.561 | 1.143 | 57.606 | 0.108 | 9.415 | 76.545 |
BRC2 | 0.358 | 1.394 | 1.120 | 1.691 | 0.024 | 1.292 | 0.716 | 6.968 | 1.120 | 50.722 | 0.120 | 12.920 | 72.566 |
BRC3 | 0.403 | 1.098 | 0.951 | 1.765 | 0.029 | 1.739 | 0.806 | 5.488 | 0.951 | 52.964 | 0.143 | 17.394 | 77.745 |
表7 BR和BRC的重金属的潜在生态风险评估指数
Table 7 Potential ecological risk assessment indices of heavy metals in BR and BRC
样品 | 单一金属污染系数Cf | 单项潜在生态风险系数Er | 重金属潜在生态风险指数RI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | Cd | Pb | As | Cr | Cu | Zn | Cd | Pb | As | ||
BR1 | 0.421 | 1.798 | 0.375 | 1.529 | 0.008 | 1.434 | 0.842 | 8.991 | 0.375 | 45.875 | 0.041 | 14.338 | 70.462 |
BR2 | 0.473 | 1.852 | 0.342 | 1.825 | 0.004 | 2.456 | 0.947 | 9.262 | 0.342 | 54.743 | 0.021 | 24.561 | 89.875 |
BR3 | 0.437 | 2.297 | 0.410 | 2.110 | 0.005 | 2.882 | 0.874 | 11.486 | 0.410 | 63.310 | 0.026 | 28.816 | 104.921 |
BRC1 | 0.356 | 1.512 | 1.143 | 1.920 | 0.022 | 0.942 | 0.712 | 7.561 | 1.143 | 57.606 | 0.108 | 9.415 | 76.545 |
BRC2 | 0.358 | 1.394 | 1.120 | 1.691 | 0.024 | 1.292 | 0.716 | 6.968 | 1.120 | 50.722 | 0.120 | 12.920 | 72.566 |
BRC3 | 0.403 | 1.098 | 0.951 | 1.765 | 0.029 | 1.739 | 0.806 | 5.488 | 0.951 | 52.964 | 0.143 | 17.394 | 77.745 |
1 | Li Y Y, Manandhar A, Li G X, et al. Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment[J]. Waste Management, 2018, 76: 294-305. |
2 | 何品晶, 周琪, 吴铎, 等. 餐厨垃圾和厨余垃圾厌氧消化产生沼渣的脱水性能分析[J]. 化工学报, 2013, 64(10): 3775-3781. |
He P J, Zhou Q, Wu D, et al. Dewaterability of digestate produced from restaurant food waste and household kitchen waste anaerobic digestion[J]. CIESC Journal, 2013, 64(10): 3775-3781. | |
3 | Li C X, Li J, Pan L J, et al. Treatment of digestate residues for energy recovery and biochar production: from lab to pilot-scale verification[J]. Journal of Cleaner Production, 2020, 265: 121852. |
4 | 李杰, 潘兰佳, 余广炜, 等. 污泥中抗生素热解特性及动力学分析[J]. 环境工程学报, 2017, 11(9): 5213-5219. |
Li J, Pan L J, Yu G W, et al. Pyrolysis characteristics and kinetics analysis of several antibiotics in sludge[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5213-5219. | |
5 | Zeng Z W, Tan X F, Liu Y G, et al. Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures[J]. Frontiers in Chemistry, 2018, 6: 80. |
6 | Berge N D, Ro K S, Mao J D, et al. Hydrothermal carbonization of municipal waste streams[J]. Environmental Science & Technology, 2011, 45(13): 5696-5703. |
7 | 王亮才, 马欢欢, 周建斌. 炭化工艺对脱水沼渣炭理化性质的影响[J]. 化工进展, 2019, 38(3): 1545-1551. |
Wang L C, Ma H H, Zhou J B. Effect of carbonization process on physiochemical properties of digestate[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1545-1551. | |
8 | Hung C Y, Tsai W T, Chen J W, et al. Characterization of biochar prepared from biogas digestate[J]. Waste Management, 2017, 66: 53-60. |
9 | 葛振, 魏源送, 刘建伟, 等. 沼渣特性及其资源化利用探究[J]. 中国沼气, 2014, 32(3): 74-82. |
Ge Z, Wei Y S, Liu J W, et al. Characteristics of digestate and utilization: an overview[J]. China Biogas, 2014, 32(3): 74-82. | |
10 | Manyà J J. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs[J]. Environmental Science & Technology, 2012, 46(15): 7939-7954. |
11 | Ma Y Q, Yin Y, Liu Y. A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery[J]. Bioresource Technology, 2017, 228: 56-61. |
12 | Li B, Yin T L, Udugama I A, et al. Food waste and the embedded phosphorus footprint in China[J]. Journal of Cleaner Production, 2020, 252: 119909. |
13 | 燕燕, 徐苏云, 左刘泉, 等. 猪粪沼渣制备生物炭的磷形态转化分析[J]. 浙江农业科学, 2020, 61(4): 772-775. |
Yan Y, Xu S Y, Zuo L Q, et al. Phosphorus form transformation during the production of biochar from digested swine manure[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(4):772-775. | |
14 | Alghashm Shakib. 餐厨垃圾沼渣炭化及其对磷和毒死蜱的吸附与土壤肥效研究[D]. 上海: 上海交通大学, 2019. |
Shakib A. Preparation of biochar from anaerobically digested food waste and its potential use in phosphorus/chlorpyrifos adsorption and soil amendment[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
15 | Zuo L Q, Lin R P, Shi Q, et al. Evaluation of the bioavailability of heavy metals and phosphorus in biochar derived from manure and manure digestate[J]. Water, Air, & Soil Pollution, 2020, 231(11): 1-11. |
16 | Liu J X, Huang S M, Chen K, et al. Preparation of biochar from food waste digestate: pyrolysis behavior and product properties[J]. Bioresource Technology, 2020, 302: 122841. |
17 | Bruun S, Harmer S L, Bekiaris G, et al. The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure[J]. Chemosphere, 2017, 169: 377-386. |
18 | Jiang B N, Lin Y Q, Mbog J C. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics[J]. Bioresource Technology, 2018, 270: 603-611. |
19 | 王兴栋, 张斌, 余广炜, 等. 不同粒径污泥热解制备生物炭及其特性分析[J]. 化工学报, 2016, 67(11): 4808-4816. |
Wang X D, Zhang B, Yu G W, et al. Preparation of biochar with different particle sized sewage sludge and its characteristics[J]. CIESC Journal, 2016, 67(11): 4808-4816. | |
20 | Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. |
21 | 李国华, 张福锁, 李海港. 畜禽粪便中磷不同组份的测定方法研究进展[J]. 土壤通报, 2013, 44(3): 760-768. |
Li G H, Zhang F S, Li H G. Research progress on methods for determination of phosphorus components in animal manure[J]. Chinese Journal of Soil Science, 2013, 44(3): 760-768. | |
22 | Wang X D, Li C X, Zhang B, et al. Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis[J]. Bioresource Technology, 2016, 221: 560-567. |
23 | Wang X D, Chang V W C, Li Z W, et al. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: synergistic effects on biochar properties and the environmental risk of heavy metals[J]. Journal of Hazardous Materials, 2021, 412: 125200. |
24 | Jin J W, Li Y N, Zhang J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426. |
25 | Demirbaş A. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield[J]. Energy Conversion and Management, 2002, 43(7): 897-909. |
26 | 田爽爽. 生物炭制备过程中养分元素迁移转化机制研究[D]. 武汉: 华中农业大学, 2016. |
Tian S S. Study on the transformation mechanism of nutrient element buring the preparation of biochar[D]. Wuhan: Huazhong Agricultural University, 2016. | |
27 | Liu D S, Zhu H Z, Wu K M, et al. Understanding the effect of particle size of waste concrete powder on phosphorus removal efficiency[J]. Construction and Building Materials, 2020, 236: 117526. |
28 | Zhang H L, Sheng G P, Fang W, et al. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems[J]. Water Research, 2015, 84: 171-180. |
29 | 孟详东, 黄群星, 严建华, 等. 磷在污泥热解过程中的迁移转化[J]. 化工学报, 2018, 69(7): 3208-3215. |
Meng X D, Huang Q X, Yan J H, et al. Migration and transformation of phosphorus during pyrolysis process of sewage sludge[J]. CIESC Journal, 2018, 69(7):3208-3215. | |
30 | Andrieux F, Aminot A. A two-year survey of phosphorus speciation in the sediments of the Bay of Seine (France)[J]. Continental Shelf Research, 1997, 17(10): 1229-1245. |
31 | Qian T T, Li D C, Jiang H. Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during Co-pyrolysis with biomass[J]. Environmental Science & Technology, 2014, 48(18): 10734-10742. |
32 | Huang R X, Fang C, Zhang B, et al. Transformations of phosphorus speciation during (hydro)thermal treatments of animal manures[J]. Environmental Science & Technology, 2018, 52(5): 3016-3026. |
33 | van Wesenbeeck S, Prins W, Ronsse F, et al. Sewage sludge carbonization for biochar applications. fate of heavy metals[J]. Energy & Fuels, 2014, 28(8): 5318-5326. |
34 | Wang X D, Li C X, Li Z W, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J]. Ecotoxicology and Environmental Safety, 2019, 168: 45-52. |
35 | Jin H M, Arazo R O, Gao J, et al. Leaching of heavy metals from fast pyrolysis residues produced from different particle sizes of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 168-175. |
36 | Mizutani S, Watanabe N, Sakai S, et al. Influence of particle size preparation of MSW incineration residues on heavy metal leaching behavior in leaching tests[J]. Environmental Sciences: an International Journal of Environmental Physiology and Toxicology, 2006, 13(6): 363-370. |
37 | Devi P, Saroha A K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J]. Bioresource Technology, 2014, 162: 308-315. |
38 | Wong J W C, Li K, Fang M, et al. Toxicity evaluation of sewage sludges in Hong Kong[J]. Environment International, 2001, 27(5): 373-380. |
39 | Zhang Z Y, Ju R, Zhou H T, et al. Migration characteristics of heavy metals during sludge pyrolysis[J]. Waste Management, 2021, 120: 25-32. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[4] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[5] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[6] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[7] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[8] | 蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577. |
[9] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[10] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[11] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[12] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[13] | 姜家豪, 黄笑乐, 任纪云, 朱正荣, 邓磊, 车得福. 生物炭吸附溶液中Pb2+的定性及定量研究[J]. 化工学报, 2023, 74(2): 830-842. |
[14] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[15] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||