1 |
臧小为, 沈瑞琪, Е. В. 尤尔托夫,等. 2008—2018年俄罗斯煤炭工业事故统计分析及启示[J]. 煤矿安全, 2020, 51(3): 247-251, 256.
|
|
Zang X W, Shen R Q, Yurtov E B, et al. Statistical analysis and lessons of accidents in coal industry of Russia during 2008 and 2018[J]. Safety in Coal Mines, 2020, 51(3): 247-251, 256.
|
2 |
许佳林. 煤矿安全管理问题及措施分析[J]. 能源与节能, 2020, (12): 157-158.
|
|
Xu J L. Analysis of coal mine safety management problems and measures[J]. Energy and Energy Conservation, 2020(12): 157-158.
|
3 |
Atay E, Bayraktaroglu S. The Turkish Soma Coal mining disaster: antecedents, consequences, and ethics Habibe Ilhan [J]. Journal of Business Ethics Education, 2019, 16(13): 231-246.
|
4 |
Meng X, Liu Q, Luo X, et al. Risk assessment of the unsafe behaviours of humans in fatal gas explosion accidents in China's underground coal mines[J]. Journal of Cleaner Production, 2019, 210(10): 970-976.
|
5 |
Alharbi A, Masri A R, Ibrahim S S. Turbulent premixed flames of CNG, LPG, and H2 propagating past repeated obstacles[J]. Experimental Thermal & Fluid Science, 2014, 56: 2-8.
|
6 |
何学秋, 杨艺, 王恩元, 等. 障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究[J]. 煤炭学报, 2004, 29(2): 186-189.
|
|
He X Q, Yang Y, Wang E Y, et al. Effects of obstacle on premixed flame microstructure and flame propagation in methane/air explosion[J]. Journal of China Coal Society, 2004, 29(2): 186-189.
|
7 |
Boeck L R, Lapointe S, Melguizo-Gavilanes J, et al. Flame propagation across an obstacle: OH-PLIF and 2-D simulations with detailed chemistry[J]. Proceedings of the Combustion Institute, 2016, 36(2): 2799-2802.
|
8 |
余明高, 袁晨樵, 郑凯. 管道内障碍物对加氢甲烷爆炸特性的影响[J]. 化工学报, 2016, 67(12): 5311-5319.
|
|
Yu M G, Yuan C Q, Zheng K. Effects of hydrogen addition on explosion characteristics of gas under condition of obstacles[J]. CIESC Journal, 2016, 67(12): 5311-5319.
|
9 |
Li Q, Sun X, Wang X, et al. Experimental study of flame propagation across flexible obstacles in a square cross-section channel[J]. International Journal of Hydrogen Energy, 2019, 44(7): 3944-3952.
|
10 |
Wei H, Gao D, Zhou L, et al. Experimental observations of turbulent flame propagation effected by flame acceleration in the end gas of closed combustion chamber[J]. Fuel, 2016, 180(15): 157-163.
|
11 |
Chapman W R, Wheeler R V. CCLⅩⅩⅩⅢ—The propagation of flame in mixtures of methane and air. Part Ⅳ. The effect of restrictions in the path of the flame[J]. Journal of the Chemical Society, 1926, 129(7): 1087-1095.
|
12 |
Fairweather M, Hargrave G K, Ibrahim S S, et al. Studies of premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1999, 116(4): 504-518.
|
13 |
林柏泉, 张仁贵, 吕恒宏. 瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J]. 煤炭学报, 1999(1): 58-61.
|
|
Lin B Q, Zhang R G, Lyu H H. Study on the law of flame propagation and its acceleration mechanism during gas explosion[J]. Journal of China Coal Society, 1999(1): 58-61.
|
14 |
Johansen C, Ciccarelli G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 571-585.
|
15 |
Masri A R, Ibrahim S S, Nehzat N, et al. Experimental study of premixed flame propagation over various solid obstructions[J]. Experimental Thermal and Fluid Science, 2000, 21(1/2/3): 109-116.
|
16 |
Ibrahim S S, Masri A R. The effects of obstructions on overpressure resulting from premixed flame deflagration[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3): 213-221.
|
17 |
Johansen C T, Ciccarelli G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion & Flame, 2009, 156(2): 405-416.
|
18 |
陈道阳, 张礼敬, 陶刚, 等. 障碍物对火焰传播过程影响数值模拟[J]. 工业安全与环保, 2012, 38(6): 35-37.
|
|
Chen D Y, Zhang L J, Tao G, et al. Study of obstacles to flame propagation in process of the combustible gas explosion[J]. Industrial Safety and Environmental Protection, 2012, 38(6): 35-37.
|
19 |
Wen X, Yu M, Liu Z, et al. Effects of cross-wise obstacle position on methane–air deflagration characteristics[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1335-1340.
|
20 |
丁以斌, 肖福全, 宣晓燕, 等. 立体结构障碍物的不同放置方式对甲烷预混火焰传播的影响[J]. 煤炭学报, 2012, 37(1): 137-140.
|
|
Ding Y B, Xiao F Q, Xuan X Y, et al. Deposited manner of solid structure obstacles influence on flame propagation in premixed-methane tube[J]. Journal of China Coal Society, 2012, 37(1): 137-140.
|
21 |
Hall R, Masri A R, Yaroshchyk P, et al. Effects of position and frequency of obstacles on turbulent premixed propagating flames[J]. Combustion and Flame, 2009, 156(2): 439-446.
|
22 |
杜扬, 李国庆, 王世茂, 等. 障碍物数量对油气泄压爆炸特性的影响[J]. 化工学报, 2017, 68(7): 2946-2955.
|
|
Du Y, Li G Q, Wang S M, et al. Effects of obstacle number on characteristics of vented gasoline-air mixture explosions[J]. CIESC Journal, 2017, 68(7): 2946-2955.
|
23 |
李国庆, 杜扬, 白洁, 等. 平板障碍物通道形状对油气爆炸传播特性影响[J]. 化工学报, 2020, 71(4): 1912-1921.
|
|
Li G Q, Du Y, Bai J, et al. Effects of flat obstacle channel shapes on characteristics of asoline-air explosion[J]. CIESC Journal, 2020, 71(4): 1912-1921.
|
24 |
Liu F, Hua Y, Zhang X, et al. Experimental study on induced accelerated combustion of premixed hydrogen-air in a confined environment[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31593-31609.
|
25 |
Lee J H S, Knystautas R, Chan C K. Turbulent flame propagation in obstacle-filled tubes[J]. Symposium on Combustion, 1985, 20(1): 1663-1672.
|
26 |
Ciccarelli G, Fowler C J, Bardon M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube[J]. Shock Waves, 2005, 14(3): 161-166.
|
27 |
Yu M, Yang X, Zheng K, et al. Experimental study of premixed syngas/air flame deflagration in a closed duct[J]. International Journal of Hydrogen Energy, 2018, 43(29): 13676-13686.
|
28 |
刘玉华, 丁以斌. 立体结构障碍物不同阻塞比对火焰传播的影响[J]. 湖南有色金属, 2008, 24(1): 1-4, 64.
|
|
Liu Y H, Ding Y B. Effect of different blockage ratios of solid structure obstacles on flames transmission[J]. Hunan Nonferrous Metals, 2008, 24(1): 1-4, 64.
|
29 |
Yang X, Yu M, Zheng K, et al. An experimental study on premixed syngas/air flame propagating across an obstacle in closed duct[J]. Fuel, 2020, 267: 117200.
|
30 |
Bychkov V, Valiev D, Eriksson L E. Physical mechanism of ultrafast flame acceleration[J]. Physical Review Letters, 2008, 101(16): 164501.
|
31 |
Bychkov V, Sadek J, Akkerman V. Analysis of flame acceleration in open or vented obstructed pipes[J]. Physical Review E, 2017, 95(1): 013111.
|
32 |
Ugarte O J, Bychkov V, Sadek J, et al. Critical role of blockage ratio for flame acceleration in channels with tightly spaced obstacles[J]. Physics of Fluids, 2016, 28(9): 823-54.
|
33 |
Eriksson P L E. Flame acceleration in the early stages of burning in tubes[J]. Combustion and Flame, 2007, 150(4): 263-276.
|
34 |
Fan B, Ying Z, Chen Z, et al. Observations of flame behavior during flame-obstacle interaction[J]. Process Safety Progress, 2008, 27(1): 66-71.
|
35 |
Xiao H, Houim R W, Oran E S. Effects of pressure waves on the stability of flames propagating in tubes[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1577-1583.
|
36 |
Xiao H, Houim R W, Oran E S. Formation and evolution of distorted tulip flames[J]. Combustion & Flame, 2015, 162(11): 4084-4101.
|
37 |
Yang X, Yu M, Zheng K, et al. A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts[J]. Energy, 2019, 178(1): 436-446.
|