化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5820-5830.DOI: 10.11949/0438-1157.20210895
收稿日期:
2021-06-30
修回日期:
2021-08-08
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
朱锡锋
作者简介:
杨耀钧(1998—),男,硕士研究生,基金资助:
Yaojun YANG(),Rui DIAO,Chu WANG,Xifeng ZHU()
Received:
2021-06-30
Revised:
2021-08-08
Online:
2021-11-05
Published:
2021-11-12
Contact:
Xifeng ZHU
摘要:
通过TG-FTIR、GC/MS和XRD等分析手段,研究了Fe2O3、Al2O3、CaO和TiO2四种金属氧化物催化下重质生物油的热解特性及产物差异。结果表明:应用上述四种催化剂的再裂解实验均促进了重质生物油的脱氧,其中CaO催化下脱氧效果最好,Al2O3能够有效降低反应温度,Fe2O3有效促进了重质生物油成炭前的解聚、固相产物质量降幅达21.23%,TiO2对CO2的生成有最明显的抑制效果、同时可以降低反应结束温度;在低温下,除CaO外的三种催化剂均对有效产物的生成有促进作用,但对不同种类的物质各有侧重,而CaO则会使反应所需温度升高且对愈创木酚的富集有很强的选择性;在中温下,CaO和TiO2表现出较好的催化效果。上述催化热解过程有效促进了酚类的富集,效果最好的是Al2O3,酚类相对含量增幅达31.10%。除Fe2O3外的三种金属氧化物均降低了生物炭的有序度,添加CaO制备的生物炭具有最无序的炭结构和最高的固相产率。
中图分类号:
杨耀钧, 刁瑞, 王储, 朱锡锋. 不同金属氧化物对重质生物油再裂解的比较性研究[J]. 化工学报, 2021, 72(11): 5820-5830.
Yaojun YANG, Rui DIAO, Chu WANG, Xifeng ZHU. Catalytic effect of different metal oxides on pyrolysis behaviors of heavy bio-oil: a comparative study[J]. CIESC Journal, 2021, 72(11): 5820-5830.
元素分析 war/% | 工业分析war/% | 热值/(MJ/kg) | pH | ||||||
---|---|---|---|---|---|---|---|---|---|
C | H | O① | N | 水分 | 挥发分 | 固定碳 | 灰分 | ||
65.33 | 6.15 | 27.83 | 0.69 | 9.75 | 75.71 | 13.17 | 1.37 | 25.5 | 3.47 |
表1 重质生物油理化性质
Table 1 Physical and chemical properties of heavy bio-oil
元素分析 war/% | 工业分析war/% | 热值/(MJ/kg) | pH | ||||||
---|---|---|---|---|---|---|---|---|---|
C | H | O① | N | 水分 | 挥发分 | 固定碳 | 灰分 | ||
65.33 | 6.15 | 27.83 | 0.69 | 9.75 | 75.71 | 13.17 | 1.37 | 25.5 | 3.47 |
组分 | 相对峰面积/% | |||||
---|---|---|---|---|---|---|
HB | HB-Fe | HB-Al | HB-Ca | HB-Ti | Raw | |
甲酸甲酯 | — | — | — | — | — | 0.53 |
苯 | — | 0.73 | 0.98 | 0.55 | 0.67 | — |
丙酸乙酯 | 0.99 | — | — | — | — | — |
七甲基二乙酸酯 | — | — | 0.56 | — | 0.54 | — |
苯酚 | 2.91 | 2.70 | 2.45 | 2.68 | 2.99 | 2.03 |
乙酸环辛酯 | 1.29 | 0.99 | 1.20 | 0.90 | 1.12 | 0.82 |
间甲酚 | 2.17 | 2.25 | 2.31 | 1.89 | 2.18 | 1.29 |
愈创木酚 | 9.92 | 9.66 | 9.68 | 11.43 | 8.68 | 6.12 |
2-乙基苯酚 | 1.09 | 1.09 | 1.56 | 1.66 | 1.04 | — |
邻环己醇甲酸乙酯 | 0.70 | — | 0.50 | — | — | — |
2,3-二甲基苯酚 | 1.50 | 1.69 | 1.75 | — | 1.91 | — |
3-正-丙基苯酚 | — | — | — | — | — | 2.69 |
萘 | 1.75 | 1.69 | 1.93 | 3.33 | 1.96 | 2.25 |
4-甲基愈创木酚 | 9.17 | 8.79 | 8.84 | 8.16 | 8.93 | 5.31 |
3-甲基-5-乙基苯酚 | 1.55 | 1.62 | 1.31 | 0.91 | 1.54 | 0.74 |
4-乙基愈创木酚 | 9.88 | 9.39 | 9.51 | 8.38 | 9.42 | 6.15 |
1-甲基萘 | — | — | — | 1.27 | — | — |
2,3,5,6-四甲基苯酚 | — | — | — | 0.75 | 0.51 | — |
丁香酚 | 17.65 | 18.22 | 19.01 | 19.02 | 19.17 | 18.94 |
二氢丁香酚 | 6.12 | 6.43 | 5.24 | 5.60 | 4.95 | 5.06 |
2,4-二甲氧基苯酚 | — | — | 1.40 | — | 1.33 | — |
2,4-二甲氧基甲苯 | — | 0.52 | — | — | 0.62 | 1.64 |
松柏醇 | 0.63 | 0.61 | 1.18 | — | 0.66 | 2.48 |
四甲基对苯二酚 | 0.94 | 1.07 | 0.94 | 1.05 | 0.96 | 0.65 |
5-叔丁基焦棓酚 | 2.74 | 2.81 | 2.68 | 2.92 | 2.68 | 2.65 |
5-仲丁基邻苯三酚 | 0.97 | 1.21 | 1.01 | 1.02 | 1.16 | — |
4-羟基-3-叔丁基-苯甲醚 | 0.51 | 0.56 | — | 0.62 | — | — |
2,4,6-三甲氧基苯甲醛 | 2.80 | 2.97 | 2.60 | 2.70 | 2.99 | — |
2-(十八氧基)乙醇 | — | 0.58 | — | 1.12 | 0.62 | 2.57 |
2-叔丁基-1,4-二甲氧基苯 | — | — | — | — | 0.64 | — |
3-羟基-4-甲氧基肉桂酸 | 0.72 | 0.92 | 0.96 | 0.80 | 1.09 | 7.27 |
蒽 | — | — | — | — | 0.69 | 0.75 |
甲基-4-羟基硬脂酸酯 | — | — | — | — | 0.59 | — |
2-甲基十六烷酸 | 0.80 | 0.87 | 0.81 | 1.22 | 0.87 | — |
硬脂酸 | — | 0.69 | 0.68 | — | 0.62 | — |
棕榈酸甲酯 | — | — | — | — | — | 0.71 |
棕榈酸乙酯 | 1.20 | — | — | — | — | — |
木焦油酸 | — | — | — | — | — | 1.34 |
油酸 | 7.66 | 6.79 | 6.43 | 5.29 | 5.96 | 8.21 |
硬脂酸乙酯 | 0.57 | — | — | — | — | — |
表5 原油与催化热解后主要产物相对峰面积
Table 5 Relative peak area of crude oil and main products after catalytic pyrolysis
组分 | 相对峰面积/% | |||||
---|---|---|---|---|---|---|
HB | HB-Fe | HB-Al | HB-Ca | HB-Ti | Raw | |
甲酸甲酯 | — | — | — | — | — | 0.53 |
苯 | — | 0.73 | 0.98 | 0.55 | 0.67 | — |
丙酸乙酯 | 0.99 | — | — | — | — | — |
七甲基二乙酸酯 | — | — | 0.56 | — | 0.54 | — |
苯酚 | 2.91 | 2.70 | 2.45 | 2.68 | 2.99 | 2.03 |
乙酸环辛酯 | 1.29 | 0.99 | 1.20 | 0.90 | 1.12 | 0.82 |
间甲酚 | 2.17 | 2.25 | 2.31 | 1.89 | 2.18 | 1.29 |
愈创木酚 | 9.92 | 9.66 | 9.68 | 11.43 | 8.68 | 6.12 |
2-乙基苯酚 | 1.09 | 1.09 | 1.56 | 1.66 | 1.04 | — |
邻环己醇甲酸乙酯 | 0.70 | — | 0.50 | — | — | — |
2,3-二甲基苯酚 | 1.50 | 1.69 | 1.75 | — | 1.91 | — |
3-正-丙基苯酚 | — | — | — | — | — | 2.69 |
萘 | 1.75 | 1.69 | 1.93 | 3.33 | 1.96 | 2.25 |
4-甲基愈创木酚 | 9.17 | 8.79 | 8.84 | 8.16 | 8.93 | 5.31 |
3-甲基-5-乙基苯酚 | 1.55 | 1.62 | 1.31 | 0.91 | 1.54 | 0.74 |
4-乙基愈创木酚 | 9.88 | 9.39 | 9.51 | 8.38 | 9.42 | 6.15 |
1-甲基萘 | — | — | — | 1.27 | — | — |
2,3,5,6-四甲基苯酚 | — | — | — | 0.75 | 0.51 | — |
丁香酚 | 17.65 | 18.22 | 19.01 | 19.02 | 19.17 | 18.94 |
二氢丁香酚 | 6.12 | 6.43 | 5.24 | 5.60 | 4.95 | 5.06 |
2,4-二甲氧基苯酚 | — | — | 1.40 | — | 1.33 | — |
2,4-二甲氧基甲苯 | — | 0.52 | — | — | 0.62 | 1.64 |
松柏醇 | 0.63 | 0.61 | 1.18 | — | 0.66 | 2.48 |
四甲基对苯二酚 | 0.94 | 1.07 | 0.94 | 1.05 | 0.96 | 0.65 |
5-叔丁基焦棓酚 | 2.74 | 2.81 | 2.68 | 2.92 | 2.68 | 2.65 |
5-仲丁基邻苯三酚 | 0.97 | 1.21 | 1.01 | 1.02 | 1.16 | — |
4-羟基-3-叔丁基-苯甲醚 | 0.51 | 0.56 | — | 0.62 | — | — |
2,4,6-三甲氧基苯甲醛 | 2.80 | 2.97 | 2.60 | 2.70 | 2.99 | — |
2-(十八氧基)乙醇 | — | 0.58 | — | 1.12 | 0.62 | 2.57 |
2-叔丁基-1,4-二甲氧基苯 | — | — | — | — | 0.64 | — |
3-羟基-4-甲氧基肉桂酸 | 0.72 | 0.92 | 0.96 | 0.80 | 1.09 | 7.27 |
蒽 | — | — | — | — | 0.69 | 0.75 |
甲基-4-羟基硬脂酸酯 | — | — | — | — | 0.59 | — |
2-甲基十六烷酸 | 0.80 | 0.87 | 0.81 | 1.22 | 0.87 | — |
硬脂酸 | — | 0.69 | 0.68 | — | 0.62 | — |
棕榈酸甲酯 | — | — | — | — | — | 0.71 |
棕榈酸乙酯 | 1.20 | — | — | — | — | — |
木焦油酸 | — | — | — | — | — | 1.34 |
油酸 | 7.66 | 6.79 | 6.43 | 5.29 | 5.96 | 8.21 |
硬脂酸乙酯 | 0.57 | — | — | — | — | — |
样品 | 反应起始 温度Ti/℃ | 最大失重 温度Tp/℃ | 反应结束 温度Tf/℃ | 净剩余 质量/% |
---|---|---|---|---|
HB | 105.11 | 216.88 | 783.67 | 17.85 |
HB-Fe | 106.70 | 132.47 | 853.00 | 14.06 |
HB-Al | 101.00 | 210.66 | 807.67 | 16.60 |
HB-Ca | 103.74 | 222.21 | 906.33 | 22.69 |
HB-Ti | 108.30 | 214.15 | 761.00 | 18.93 |
表2 重质油TG-DTG特征参数
Table 2 TG-DTG characteristic parameters of heavy bio-oil
样品 | 反应起始 温度Ti/℃ | 最大失重 温度Tp/℃ | 反应结束 温度Tf/℃ | 净剩余 质量/% |
---|---|---|---|---|
HB | 105.11 | 216.88 | 783.67 | 17.85 |
HB-Fe | 106.70 | 132.47 | 853.00 | 14.06 |
HB-Al | 101.00 | 210.66 | 807.67 | 16.60 |
HB-Ca | 103.74 | 222.21 | 906.33 | 22.69 |
HB-Ti | 108.30 | 214.15 | 761.00 | 18.93 |
组分种类 | 官能团 | 特征波长/cm-1 |
---|---|---|
醇类 | C—O(H)/O—H | 1058 |
酚类/醚类 | C—O/O—H | 1178 |
烷烃 | C—H | 1372 |
芳香族化合物 | 苯基 | 1510 |
酸类/酯类 | CO | 1798 |
CO2 | CO | 2360 |
CH4 | C—H | 2936 |
H2O | O—H | 3582 |
表3 典型产物和官能团的红外光谱带
Table 3 IR bands of typical products and functional groups to samples
组分种类 | 官能团 | 特征波长/cm-1 |
---|---|---|
醇类 | C—O(H)/O—H | 1058 |
酚类/醚类 | C—O/O—H | 1178 |
烷烃 | C—H | 1372 |
芳香族化合物 | 苯基 | 1510 |
酸类/酯类 | CO | 1798 |
CO2 | CO | 2360 |
CH4 | C—H | 2936 |
H2O | O—H | 3582 |
图4 催化裂解过程中红外吸收率随温度的分布(a) 醇类; (b) 酚类、醚类; (c) 烷烃; (d) 芳香族化合物; (e) 羧酸、酯类; (f) CO2; (g) CH4; (h) H2O
Fig.4 IR absorbance distributions with temperature during catalytic pyrolysis(a) alcohols; (b) phenols, ethers; (c) alkanes; (d) aromatics; (e) carboxylic acids, esters; (f) CO2; (g) CH4; (h) H2O
样品 | 固相产物/% | 液相产物/% | 气相产物①/% |
---|---|---|---|
HB | 17.47% | 39.37% | 43.16% |
HB-Fe | 13.59% | 44.55% | 41.86% |
HB-Al | 16.21% | 44.02% | 39.77% |
HB-Ca | 21.36% | 32.00% | 46.64% |
HB-Ti | 17.53% | 45.59% | 36.88% |
表4 小试实验三相产率分布
Table 4 Phase yield distribution
样品 | 固相产物/% | 液相产物/% | 气相产物①/% |
---|---|---|---|
HB | 17.47% | 39.37% | 43.16% |
HB-Fe | 13.59% | 44.55% | 41.86% |
HB-Al | 16.21% | 44.02% | 39.77% |
HB-Ca | 21.36% | 32.00% | 46.64% |
HB-Ti | 17.53% | 45.59% | 36.88% |
组分 | 相对含量/% | ||||
---|---|---|---|---|---|
HB | HB-Fe | HB-Al | HB-Ca | HB-Ti | |
苯酚 | 0.80 | 0.71 | 0.65 | 0.72 | 0.86 |
愈创木酚 | 2.41 | 2.26 | 2.50 | 3.21 | 2.53 |
4-甲基愈创木酚 | 3.17 | 2.15 | 2.38 | 2.44 | 2.63 |
4-乙基愈创木酚 | 3.08 | 2.58 | 2.61 | 2.31 | 3.34 |
丁香酚 | 4.98 | 5.04 | 5.29 | 4.99 | 5.60 |
表6 主要产物相对含量
Table 6 Relative content of main products after catalytic pyrolysis
组分 | 相对含量/% | ||||
---|---|---|---|---|---|
HB | HB-Fe | HB-Al | HB-Ca | HB-Ti | |
苯酚 | 0.80 | 0.71 | 0.65 | 0.72 | 0.86 |
愈创木酚 | 2.41 | 2.26 | 2.50 | 3.21 | 2.53 |
4-甲基愈创木酚 | 3.17 | 2.15 | 2.38 | 2.44 | 2.63 |
4-乙基愈创木酚 | 3.08 | 2.58 | 2.61 | 2.31 | 3.34 |
丁香酚 | 4.98 | 5.04 | 5.29 | 4.99 | 5.60 |
1 | Cheng S Y, Wei L, Julson J, et al. Hydrocarbon bio-oil production from pyrolysis bio-oil using non-sulfide Ni-Zn/Al2O3 catalyst[J]. Fuel Processing Technology, 2017, 162: 78-86.. |
2 | 陈军昊, 卢亮, 王树荣. 基于分子蒸馏的模拟生物油温和加氢研究[J]. 燃料化学学报, 2017, 45(9): 1056-1063. |
Chen J H, Lu L, Wang S R. Mild hydrogenation of simulated bio-oil based on molecular distillation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(9): 1056-1063. | |
3 | Qu W D, Wei L, Julson J. An exploration of improving the properties of heavy bio-oil[J]. Energy & Fuels, 2013, 27(8): 4717-4722. |
4 | 颜蓓蓓, 王建, 刘彬, 等. 生物油金属水热原位加氢提质技术研究进展[J]. 化工学报, 2021, 72(4): 1783-1795. |
Yan B B, Wang J, Liu B, et al. Research progress of bio-oil metal hydrothermal in situ hydrogenation technology[J]. CIESC Journal, 2021, 72(4): 1783-1795. | |
5 | Wang C, Luo Z J, Diao R, et al. Study on the effect of condensing temperature of walnut shells pyrolysis vapors on the composition and properties of bio-oil[J]. Bioresource Technology, 2019, 285: 121370. |
6 | Wang C, Yuan X H, Li S S, et al. Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation[J]. Renewable Energy, 2021, 169: 1317-1329. |
7 | Ma S W, Zhang L Q, Zhu L, et al. Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation[J]. Journal of Analytical and Applied Pyrolysis, 2018, 131: 113-119. |
8 | 马善为. 生物质热解气建模与分级冷凝研究[D]. 合肥: 中国科学技术大学, 2018. |
Ma S W. Study of modeling and fractional condensation of biomass pyrolysis gas[D]. Hefei: University of Science and Technology of China, 2018. | |
9 | 李时瑛, 朱谢飞, 张立强, 等. 基于不同萃取剂的生物油常压蒸馏研究[J]. 燃料化学学报, 2019, 47(3): 312-317. |
Li S Y, Zhu X F, Zhang L Q, et al. Atmospheric distillation of bio-oil based on different extractants[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 312-317. | |
10 | 李时瑛. 生物油预处理结合常压蒸馏改善生物油下游产品的品质[D]. 合肥: 中国科学技术大学, 2020. |
Li S Y. Improved bio-oil distilling effect by bio-oil pretreatment to enhance the qualities of bio-oil products[D]. Hefei: University of Science and Technology of China, 2020. | |
11 | 罗泽军, 胡永华, 王雨松, 等. 重质生物油理化性质及其热解特性研究[J]. 化工学报, 2019, 70(8): 3196-3201. |
Luo Z J, Hu Y H, Wang Y S, et al. Physicochemical properties and pyrolysis characteristics of heavy bio-oil[J]. CIESC Journal, 2019, 70(8): 3196-3201. | |
12 | Luo Z J, Zhu X F, Wang C, et al. Comparative study on the evolution of physicochemical properties of tar obtained from heavy fraction of bio-oil at different heating rates[J]. Journal of Analytical and Applied Pyrolysis, 2020, 150: 104854. |
13 | Mortensen P M, Grunwaldt J D, Jensen P A, et al. A review of catalytic upgrading of bio-oil to engine fuels[J]. Applied Catalysis A: General, 2011, 407(1/2): 1-19. |
14 | Uemura Y, Tran N T T, Naqvi S R, et al. Nano-catalysts for upgrading bio-oil: catalytic decarboxylation and hydrodeoxygenation[J]. AIP Conference Proceedings, 2017, 1877(1): 020002. |
15 | Oh S, Lee J H, Choi J W. Hydrodeoxygenation of crude bio-oil with various metal catalysts in a continuous-flow reactor and evaluation of emulsion properties of upgraded bio-oil with petroleum fuel[J]. Renewable Energy, 2020, 160: 1160-1167. |
16 | 孙来芝, 陈雷, 赵保峰, 等. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报, 2019, 70(8): 3160-3166. |
Sun L Z, Chen L, Zhao B F, et al. Experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst[J]. CIESC Journal, 2019, 70(8): 3160-3166. | |
17 | 张淑梅, 王允圃, 夏美玲, 等. 生物质双级催化热解制备燃料化学品的研究进展[J]. 化工进展, 2021, 40(5): 2496-2508. |
Zhang S M, Wang Y P, Xia M L, et al. Research progress in preparation of fuel chemicals by dual catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2496-2508. | |
18 | Liu C, Wang H, Karim A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-7623. |
19 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
20 | Tang W W, Zhang X H, Zhang Q, et al. Hydrodeoxygenation of anisole over Ni/α-Al2O3 catalyst[J]. Chinese Journal of Chemical Physics, 2016, 29(5): 617-622. |
21 | Chong Y Y, Thangalazhy-Gopakumar S, Ng H K, et al. Effect of oxide catalysts on the properties of bio-oil from in situ catalytic pyrolysis of palm empty fruit bunch fiber[J]. Journal of Environmental Management, 2019, 247: 38-45. |
22 | 孙孟超, 袁鑫华, 罗泽军, 等. 蒸馏温度对核桃壳生物油馏分组分分布的影响[J]. 燃料化学学报, 2020, 48(10): 1179-1185. |
Sun M C, Yuan X H, Luo Z J, et al. Influence of heating temperatures on the component distribution of distillates derived from walnut shell bio-oil[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1179-1185. | |
23 | Fang S W, Yu Z S, Ma X Q, et al. Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model)[J]. Energy, 2018, 143: 517-532. |
24 | Pickard S, Daood S S, Pourkashanian M, et al. Robust extension of the Coats-Redfern technique: reviewing rapid and realiable reactivity analysis of complex fuels decomposing in inert and oxidizing thermogravimetric analysis atmospheres[J]. Energy & Fuels, 2013, 27(5): 2818-2826. |
25 | Fang S W, Yu Z S, Lin Y, et al. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis[J]. Bioresource Technology, 2016, 209: 265-272. |
26 | Zou X W, Yao J Z, Yang X M, et al. Catalytic effects of metal chlorides on the pyrolysis of lignite[J]. Energy & Fuels, 2007, 21(2): 619-624. |
27 | Liu Q, Wang S R, Zheng Y, et al. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 170-177. |
28 | Chen L, Yu Z S, Liang J Y, et al. Co-pyrolysis of chlorella vulgaris and kitchen waste with different additives using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2018, 177: 582-591. |
29 | Liu L L, Kumar S, Wang Z H, et al. Catalytic effect of metal chlorides on coal pyrolysis and gasification (part Ⅰ): Combined TG-FTIR study for coal pyrolysis[J]. Thermochimica Acta, 2017, 655: 331-336. |
30 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
31 | Lin X N, Zhang Z F, Zhang Z J, et al. Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts[J]. Waste Management, 2018, 79: 38-47. |
32 | Lin Y Y, Zhang C, Zhang M C, et al. Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor[J]. Energy & Fuels, 2010, 24(10): 5686-5695. |
33 | Diao R, Zhu X F, Wang C, et al. Synergistic effect of physicochemical properties and reaction temperature on gasification reactivity of walnut shell chars[J]. Energy Conversion and Management, 2020, 204: 112313. |
34 | Huang Y Q, Yin X L, Wu C Z, et al. Effects of metal catalysts on CO2 gasification reactivity of biomass char[J]. Biotechnology Advances, 2009, 27(5): 568-572. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[13] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[14] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[15] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||