化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4910-4920.DOI: 10.11949/0438-1157.20210030
朱轶林1,2(),张新敬1,2,徐玉杰1,2,3,丁捷1,2,郭欢1,2,陈海生1,2,3()
收稿日期:
2021-01-08
修回日期:
2021-04-06
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
陈海生
作者简介:
朱轶林(1989—),男,博士,助理研究员,基金资助:
Yilin ZHU1,2(),Xinjing ZHANG1,2,Yujie XU1,2,3,Jie DING1,2,Huan GUO1,2,Haisheng CHEN1,2,3()
Received:
2021-01-08
Revised:
2021-04-06
Online:
2021-09-05
Published:
2021-09-05
Contact:
Haisheng CHEN
摘要:
生物质热解气化可实现碳基可再生能源的高效清洁利用。为准确预测生物质热解气化产率分布,贴合生物质热解气化真实转化过程,由生物质热解气化实测数据通过遗传算法(genetic algorithm, GA)对综合计算法模型进行改进,按照综合计算法中热解段和固定碳气化反应段建立Aspen Plus模型。 结果表明:在GA-综合计算法中,稻壳在热解段CO2的氧为干基氧含量的32.02%,焦油产率为挥发分的8.32%, 平均热解组分误差为8.53%,平均合成气组分误差为5.37%;基于GA-综合计算法的Aspen Plus模型,热解过程组分和气化段固定碳转化率由GA-综合计算法得出,实现了GA-综合计算法和流程模拟的复合, 其合成气模拟值与实验值接近,较好地反映生物质热解气化流程,为生物质热解气化产率分布及流程参数优化提供指导。
中图分类号:
朱轶林, 张新敬, 徐玉杰, 丁捷, 郭欢, 陈海生. 基于遗传算法-综合计算法的生物质热解气化优化分析[J]. 化工学报, 2021, 72(9): 4910-4920.
Yilin ZHU, Xinjing ZHANG, Yujie XU, Jie DING, Huan GUO, Haisheng CHEN. Analysis and optimization of biomass pyrolysis and gasification based on genetic algorithm-comprehensive calculation method[J]. CIESC Journal, 2021, 72(9): 4910-4920.
No. | 综合计算法 | GA-综合计算法 |
---|---|---|
1 | 燃料中约CR1=0.45的O与当量的H生成热解水 | CR1=0.2~0.45 |
2 | 燃料中约CR2=0.3的O转变为CO2 | CR2=0.2~0.5 |
3 | 燃料中约CR3=0.2的H转变为CH4 | CR3=0.15~0.25 |
4 | 3%的H与当量的C生成C2H4 | 不变 |
5 | 焦油产率约为挥发分的Rtar=0.1,且焦油含量中的C、H、O和N的物质的量之比为66∶78∶7.5∶1 | 焦油分子组成为CH1.12O0.19,Rtar=0.05~0.1 |
6 | 燃料中所有的N都转入生物质干馏气中 | 不变 |
7 | 燃料中20%的S进入灰渣,80%的S与当量的H以H2S形式进入生物质气中 | 不变 |
8 | 剩余的H都以游离状态转入生物质干馏气中 | 不变 |
9 | 剩余的O与当量的C以CO的形式转入生物质干馏气中 | 不变 |
表1 两种模型热解段产物产率输入条件对比
Table 1 Comparison of input values of pyrolysis composition yields in different models
No. | 综合计算法 | GA-综合计算法 |
---|---|---|
1 | 燃料中约CR1=0.45的O与当量的H生成热解水 | CR1=0.2~0.45 |
2 | 燃料中约CR2=0.3的O转变为CO2 | CR2=0.2~0.5 |
3 | 燃料中约CR3=0.2的H转变为CH4 | CR3=0.15~0.25 |
4 | 3%的H与当量的C生成C2H4 | 不变 |
5 | 焦油产率约为挥发分的Rtar=0.1,且焦油含量中的C、H、O和N的物质的量之比为66∶78∶7.5∶1 | 焦油分子组成为CH1.12O0.19,Rtar=0.05~0.1 |
6 | 燃料中所有的N都转入生物质干馏气中 | 不变 |
7 | 燃料中20%的S进入灰渣,80%的S与当量的H以H2S形式进入生物质气中 | 不变 |
8 | 剩余的H都以游离状态转入生物质干馏气中 | 不变 |
9 | 剩余的O与当量的C以CO的形式转入生物质干馏气中 | 不变 |
原料 | 工业分析/%(收到基) | 热值Qar,net/(MJ/kg) | 元素分析/%(干燥基) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
挥发分Var | 固定碳Fcar | 灰含量Ashar | 水分Mar | Nd | Cd | Sd | Hd | Od | ||
稻壳 | 63.7 | 12.6 | 16.9 | 6.8 | 14.35 | 0.54 | 40.34 | 0.107 | 5.26 | 35.62 |
白杨木 | 77.1 | 9.5 | 3 | 10.4 | 19.18 | 0.67 | 55.58 | 0.33 | 6.47 | 33.59 |
表2 生物质原料的工业分析和元素分析
Table 2 Proximate and ultimate analysis of biomass samples
原料 | 工业分析/%(收到基) | 热值Qar,net/(MJ/kg) | 元素分析/%(干燥基) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
挥发分Var | 固定碳Fcar | 灰含量Ashar | 水分Mar | Nd | Cd | Sd | Hd | Od | ||
稻壳 | 63.7 | 12.6 | 16.9 | 6.8 | 14.35 | 0.54 | 40.34 | 0.107 | 5.26 | 35.62 |
白杨木 | 77.1 | 9.5 | 3 | 10.4 | 19.18 | 0.67 | 55.58 | 0.33 | 6.47 | 33.59 |
图5 综合平衡常数对稻壳干合成气组分、固定碳转化成CO摩尔系数和C/N特征值的影响
Fig.5 Effect of comprehensive equivalent constant on gasification compositions, transferring coefficient of fixed carbon for CO and characteristic value C/N
图7 固定碳转化率对干合成气组分、固定碳转化成CO摩尔系数和C/N特征值的影响
Fig.7 Effect of conversion ratio of fixed carbon on gasification compositions, transferring coefficient of fixed carbon for CO and characteristic value C/N
1 | Wang Z H, Bui Q, Zhang B, et al. Biomass energy production and its impacts on the ecological footprint: an investigation of the G7 countries[J]. Science of the Total Environment, 2020, 743: 140741. |
2 | Zhu Y L, Li W Y, Li J, et al. Thermodynamic analysis and economic assessment of biomass-fired organic Rankine cycle combined heat and power system integrated with CO2 capture[J]. Energy Conversion and Management, 2020, 204: 112310. |
3 | Singh Siwal S, Zhang Q B, Sun C B, et al. Energy production from steam gasification processes and parameters that contemplate in biomass gasifier—a review[J]. Bioresource Technology, 2020, 297: 122481. |
4 | Wu H F, Liu Q B, Bai Z, et al. Thermodynamics analysis of a novel steam/air biomass gasification combined cooling, heating and power system with solar energy[J]. Applied Thermal Engineering, 2020, 164: 114494. |
5 | Ishaq H, Dincer I. A new energy system based on biomass gasification for hydrogen and power production[J]. Energy Reports, 2020, 6: 771-781. |
6 | 郭鹏坤,李攀,常春,等. 计算机模拟技术在生物质转化中的应用研究进展[J]. 化工进展, 2020, 39(8): 3027-3040. |
Guo P K, Li P, Chang C, et al. Advances in the application of computer simulation technology in biomass conversion[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3027-3040. | |
7 | Silva I P, Lima R M A, Silva G F, et al. Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: a review of model modifications[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109305. |
8 | 孔大力,罗坤,林俊杰,等. 双流化床生物质气化的三维全循环数值模拟[J]. 化工学报, 2019, 70(8): 3167-3176. |
Kong D L, Luo K, Lin J J, et al. Three-dimensional full-loop simulation of biomass gasification in dual fluidized bed[J]. CIESC Journal, 2019, 70(8): 3167-3176. | |
9 | 闫桂焕,孙奉仲,孙荣峰,等. 生物质气化过程的热力学模型研究[J]. 农业机械学报, 2010, 41(9): 85-89. |
Yan G H, Sun F Z, Sun R F, et al. Research on thermodynamic model of biomass gasification process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(9): 85-89. | |
10 | 闫桂焕,许敏,许崇庆,等. 考虑焦油的生物质气化过程热力学模型[J]. 农业工程学报, 2013, 29(Sl): 230-234. |
Yan G H, Xu M, Xu C Q, et al. Research on thermodynamic mathematical model of biomass gasification process with tar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(Sl): 230-234. | |
11 | Gordillo G, Annamalai K, Carlin N. Adiabatic fixed-bed gasification of coal, dairy biomass, and feedlot biomass using an air-steam mixture as an oxidizing agent[J]. Renewable Energy, 2009, 34(12): 2789-2797. |
12 | Gordillo G, Annamalai K. Adiabatic fixed bed gasification of dairy biomass with air and steam[J]. Fuel, 2010, 89(2): 384-391. |
13 | 李旺. 基于Aspen Plus的生物质气化综合计算法模型研究[D]. 石家庄:河北科技大学, 2019. |
Li W. Research on comprehensive calculation model of biomass gasification based on Aspen Plus[D]. Shijiazhuang: Hebei University of Science and Technology, 2019. | |
14 | 李洪涛,徐有宁,张亚宁,等. 生物质空气/水蒸气气化的综合计算法模型[J]. 华北电力大学学报(自然科学版),2012, 39(1): 70-75. |
Li H T, Xu Y N, Zhang Y N, et al. A comprehensive calculation model of biomass gasification used air/steam[J]. Journal of North China Electric Power University (Natural Science Edition), 2012, 39(1): 70-75. | |
15 | 李洪涛,李炳熙,徐有宁,等. 上吸式固定床生物质气化的综合计算法模型[J]. 太阳能学报, 2014, 35(11): 2210-2215. |
Li H T, Li B X, Xu Y N, et al. Comprehensive calculation model for biomass gasification in updraft fixed bed gasifier[J]. Acta Energiae Solaris Sinica, 2014, 35(11): 2210-2215. | |
16 | 蔡敏华,唐兰,赵矿美, 等. 等离子体热解生物质的合成气发电及热力学分析[J]. 南京理工大学学报, 2017, 41(3): 371-376. |
Cai M H, Tang L, Zhao K M, et al. Synthesis gas electricity generation and thermodynamic analysis of biomass plasma pyrolysis[J]. Journal of Nanjing University of Science and Technology, 2017, 41(3): 371-376. | |
17 | 张伟. 基于Aspen Plus的生物质气化过程模拟及工艺优化研究[D]. 广州:广东工业大学,2018. |
Zhang W. Process simulation and optimization of biomass gasification based on Aspen Plus[D]. Guangzhou: Guangdong University of Technology, 2018. | |
18 | Lan W J, Chen G Y, Zhu X L, et al. Biomass gasification-gas turbine combustion for power generation system model based on ASPEN PLUS[J]. Science of the Total Environment, 2018, 628/629:1278-1286. |
19 | AI-Zareer M, Dincer I, Rosen M A. Influence of selected gasification parameters on syngas composition from biomass gasification[J]. Journal of Energy Resources Technology, 2018, 140(4): 041803. |
20 | Nikoo M B, Mahinpey N. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS[J]. Biomass and Bioenergy, 2008, 32(12): 1245-1254. |
21 | Kaushal P, Tyagi R. Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS[J]. Renewable Energy, 2017, 101: 629-636. |
22 | 张伟,吴永明. 基于Aspen Plus的固定床生物质气化过程的建模、仿真及工艺优化[J]. 林产化学与工业, 2018, 38(3): 75-82. |
Zhang W, Wu Y M. Simulation and optimization of fixed bed biomass gasification processed by Aspen Plus[J]. Chemistry and Industry of Forest Products, 2018, 38(3): 75-82. | |
23 | 张铭,李乐豪,李如龙,等. 二氧化碳等离子体处理生物质焦油[J]. 化工学报, 2020, 71(10): 4773-4782. |
Zhang M, Li L H, Li R L, et al. Treatment of biomass tar by CO2 plasma[J]. CIESC Journal, 2020, 71(10): 4773-4782. | |
24 | Pauls J H, Mahinpey N, Mostafavi E. Simulation of air-steam gasification of woody biomass in a bubbling fluidized bed using Aspen Plus: a comprehensive model including pyrolysis, hydrodynamics and tar production[J]. Biomass and Bioenergy, 2016, 95: 157-166. |
25 | Suárez-Almeida M, Gómez-Barea A, Ghoniem A F, et al. Solar gasification of biomass in a dual fluidized bed[J]. Chemical Engineering Journal, 2021, 406: 126665. |
26 | Wan K D, Vervisch L, Gao Z X, et al. Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms[J]. Energy, 2020, 211: 118565. |
27 | Rammal A, Perrin E, Vrabie V, et al. Selection of discriminant mid-infrared wavenumbers by combining a naive Bayesian classifier and a genetic algorithm: application to the evaluation of lignocellulosic biomass biodegradation[J]. Mathematical Biosciences, 2017, 289: 153-161. |
28 | 范洪刚,袁浩然,林镇荣,等. 可燃固体废弃物热解气化技术及工程化模拟研究进展[J]. 新能源进展, 2017, 5(3): 204-211. |
Fan H G, Yuan H R, Lin Z R, et al. Advance in pyrolysis and gasification of combustible solid waste and engineering simulation study[J]. Advances in New and Renewable Energy, 2017, 5(3): 204-211. | |
29 | Han J, Liang Y, Hu J, et al. Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus[J]. Energy Conversion and Management, 2017, 153: 641-648. |
30 | 张亚宁. 生物质气化产气的模拟及优化研究[D]. 哈尔滨:哈尔滨工业大学, 2009. |
Zhang Y N. Simulation and optimization study on biomass gasification[D]. Harbin: Harbin Institute of Technology, 2009. | |
31 | 高杨,肖军,沈来宏. 串行流化床生物质气化制取富氢气体模拟研究[J]. 太阳能学报, 2008, 29(7):894-899. |
Gao Y, Xiao J, Shen L H. Hydrogen production from biomass gasification in interconnected fluidized beds[J]. Acta Energiae Solaris Sinica, 2008, 29(7): 894-899. | |
32 | Cao Y, Bai Y, Du J. Air-steam gasification of biomass based on a multi-composition multi-step kinetic model: a clean strategy for hydrogen-enriched syngas production[J]. Science of the Total Environment, 2021, 753: 141690. |
33 | 成功,焦李,段田莉. 脱水污泥/生物质移动床混合热解-气化的协同效应[J]. 太阳能学报, 2019, 40(4): 1093-1099. |
Cheng G, Jiao L, Duan T L. Synergistic effect on pyrolysis-gasification of dewatered sewage sludge and biomass in a moving bed gasifier[J]. Acta Energiae Solaris Sinica, 2019, 40(4): 1093-1099. | |
34 | 马善为. 生物质热解气建模与分级冷凝研究[D]. 合肥:中国科学技术大学, 2018. |
Ma S W. Study of modeling and fractional condensation of biomass pyrolysis gas[D]. Hefei: University of Science and Technology of China, 2018. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[6] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[7] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[8] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[9] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[10] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[11] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[12] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[13] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[14] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[15] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||