化工学报 ›› 2022, Vol. 73 ›› Issue (1): 441-450.DOI: 10.11949/0438-1157.20211460

• 材料化学工程与纳米技术 • 上一篇    下一篇

紫外光交联法制备全固态聚合物电解质

郑哲楠1,2(),高翔1(),罗英武1,黄杰2   

  1. 1.化学工程联合国家重点实验室,浙江大学化学工程与生物工程学院,浙江 杭州 310027
    2.福建省现代分离分析科学与技术重点实验室,闽南师范大学化学化工与环境学院,福建 漳州 363000
  • 收稿日期:2021-10-13 修回日期:2021-11-25 出版日期:2022-01-05 发布日期:2022-01-18
  • 通讯作者: 高翔
  • 作者简介:郑哲楠(1991—),女,博士,讲师,zhenan@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(21875213);福建省自然科学基金项目(2020J01805);福建省中青年教师教育科研项目(JAT200339)

Preparation of all-solid-state polymer electrolyte by ultraviolet cross-linking method

Zhenan ZHENG1,2(),Xiang GAO1(),Yingwu LUO1,Jie HUANG2   

  1. 1.State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2.Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, Fujian, China
  • Received:2021-10-13 Revised:2021-11-25 Online:2022-01-05 Published:2022-01-18
  • Contact: Xiang GAO

摘要:

制约全固态聚合物电解质开发应用的瓶颈在于如何同时实现高离子电导率与高机械强度。采用可逆加成断裂链转移(RAFT)溶液聚合技术,以3-环己烯-1-亚甲基丙烯酸酯(CEA)为后交联单体,聚乙二醇甲醚丙烯酸酯(PEGMA)为导离子单体,制备了不同链结构的全固态聚合物电解质,再通过硫醇-烯烃之间的“点击化学”反应形成化学交联网络结构。所制备的三嵌段共聚物电解质具有独立的导离子中间嵌段,且交联单体位于分子链两端,从而能够同时满足离子电导率与机械强度的要求。该三嵌段共聚物电解质在60℃下的离子电导率为6.13×10-5 S/cm,并应用于磷酸亚铁锂/锂(LiFePO4/Li)全固态电池。所得电池在0.5 C下循环130圈后,放电比容量为139.1 mAh/g,容量保持率为97.8%,库仑效率高于99.0%,显示出良好的电化学性能。

关键词: 电化学, 电解质, 聚合物, 全固态锂电池, 聚合物电解质, RAFT自由基聚合, 链结构与性能关系

Abstract:

In the application of all-solid-state polymer electrolyte (SPE), the bottleneck is how to meet the requirements of ion conductivity and mechanical strength simultaneously. Aiming at the above problem, this paper adopts the reversible addition fragmentation chain transfer (RAFT) solution polymerization technology to synthesize SPEs with different chain structures. The SPEs apply the cyclohex-3-enylmethyl acrylate (CEA) as post-crosslinking monomer and the poly(ethylene glycol) methyl ether acrylate (PEGMA) as ion-conducting monomer. A chemically cross-linked network structure was formed by the “click chemistry” reaction between the double bond on the cyclohexene in CEA and the mercaptan. The prepared triblock copolymer electrolyte has independent ion-conducting blocks while the crosslinking monomers concentrating at both ends of the molecular chain, thus meeting the demands of mechanical strength and ionic conductivity simultaneously. The prepared triblock copolymer electrolyte presented ionic conductivity of 6.13×10-5 S/cm at 60℃. The lithium iron phosphate/lithium (LiFePO4/Li) all-solid-state battery using the prepared triblock copolymer electrolyte presented specific discharge capacity of 139.1 mAh/g after 130 cycles at 0.5 C. The retention rate was 97.8% while the coulombic efficiency remained above 99.0%, showing good electrochemical performance.

Key words: electrochemistry, electrolytes, polymers, all-solid-state lithium battery, polymer electrolytes, RAFT radical polymerization, relationship between chain structure and properties

中图分类号: