1 |
Onoe H, Okitsu T, Itou A, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions[J]. Nature Materials, 2013, 12(6): 584-590.
|
2 |
Du X Y, Li Q, Wu G, et al. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology[J]. Advanced Materials, 2019, 31(52): 1903733.
|
3 |
He X, Zi Y L, Guo H Y, et al. A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics[J]. Advanced Functional Materials, 2017, 27(4): 1604378.
|
4 |
Wang P, Wang Y P, Tong L M. Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale[J]. Light: Science & Applications, 2013, 2(10): e102.
|
5 |
Zhou J, Xu X Z, Xin Y Y, et al. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors[J]. Advanced Functional Materials, 2018, 28(16): 1705591.
|
6 |
Chen C P, Townsend A D, Sell S A, et al. Microchip-based 3D-cell culture using polymer nanofibers generated by solution blow spinning[J]. Analytical Methods, 2017, 9(22): 3274-3283.
|
7 |
Chen T, Wang S T, Yang Z B, et al. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell[J]. Angewandte Chemie International Edition, 2011, 50(8): 1815-1819.
|
8 |
Ghosh S, Parker S T, Wang X Y, et al. Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications[J]. Advanced Functional Materials, 2008, 18(13): 1883-1889.
|
9 |
Huang Y, Bai X P, Zhou M, et al. Large-scale spinning of silver nanofibers as flexible and reliable conductors[J]. Nano Letters, 2016, 16(9): 5846-5851.
|
10 |
Inozemtseva O A, Salkovskiy Y E, Severyukhina A N, et al. Electrospinning of functional materials for biomedicine and tissue engineering[J]. Russian Chemical Reviews, 2015, 84(3): 251-274.
|
11 |
Qin C C, Duan X P, Wang L, et al. Melt electrospinning of poly(lactic acid) and polycaprolactone microfibers by using a hand-operated Wimshurst generator[J]. Nanoscale, 2015, 7(40): 16611-16615.
|
12 |
Truby R L, Lewis J A. Printing soft matter in three dimensions[J]. Nature, 2016, 540(7633): 371-378.
|
13 |
Xu Z, Gao C. In situ polymerization approach to graphene-reinforced Nylon-6 composites[J]. Macromolecules, 2010, 43(16): 6716-6723.
|
14 |
Yu Y, Shang L, Guo J, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nature Protocols, 2018, 13(11): 2557-2579.
|
15 |
Zarrin F, Dovichi N J. Sub-picoliter detection with the sheath flow cuvette[J]. Analytical Chemistry, 1985, 57(13): 2690-2692.
|
16 |
Kim S, Oh H, Baek J, et al. Hydrodynamic fabrication of polymeric barcoded strips as components for parallel bio-analysis and programmable microactuation[J]. Lab on a Chip, 2005, 5(10): 1168.
|
17 |
Shi X T, Ostrovidov S, Zhao Y H, et al. Microfluidic spinning of cell-responsive grooved microfibers[J]. Advanced Functional Materials, 2015, 25(15): 2250-2259.
|
18 |
Kang E, Jeong G S, Choi Y Y, et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres[J]. Nature Materials, 2011, 10(11): 877-883.
|
19 |
Furness J B. The enteric nervous system and neurogastroenterology[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(5): 286-294.
|
20 |
Choi C H, Yi H, Hwang S, et al. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow[J]. Lab on a Chip, 2011, 11(8): 1477.
|
21 |
Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85-89.
|
22 |
Bai H, Tian X L, Zheng Y M, et al. Direction controlled driving of tiny water drops on bioinspired artificial spider silks[J]. Advanced Materials, 2010, 22(48): 5521-5525.
|
23 |
Chiesa E, Dorati R, Pisani S, et al. The microfluidic technique and the manufacturing of polysaccharide nanoparticles[J]. Pharmaceutics, 2018, 10(4): 267.
|
24 |
Hassan N, Oyarzun-Ampuero F, Lara P, et al. Flow chemistry to control the synthesis of nano and microparticles for biomedical applications[J]. Current Topics in Medicinal Chemistry, 2014, 14(5): 676-689.
|
25 |
褚良银, 谢锐, 巨晓洁, 等. 微流控技术构建单分散微囊膜的研究新进展[J]. 膜科学与技术, 2011, 31(3): 59-63.
|
|
Chu L Y, Xie R, Ju X J, et al. Recent progress in monodisperse microcapsule membranes generated with microfluidic technique[J]. Membrane Science and Technology, 2011, 31(3): 59-63.
|
26 |
Martins E, Poncelet D, Rodrigues R C, et al. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks[J]. Journal of Microencapsulation, 2017, 34(8): 754-771.
|
27 |
Namgung B, Ravi K, Vikraman P P, et al. Engineered cell-laden alginate microparticles for 3D culture[J]. Biochemical Society Transactions, 2021, 49(2): 761-773.
|
28 |
Sun T, Li X F, Shi Q, et al. Microfluidic spun alginate hydrogel microfibers and their application in tissue engineering[J]. Gels, 2018, 4(2): 38.
|
29 |
Tumarkin E, Kumacheva E. Microfluidic generation of microgels from synthetic and natural polymers[J]. Chemical Society Reviews, 2009, 38(8): 2161-2168.
|
30 |
Xu M J, Qin M, Cheng Y Z, et al. Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine[J]. Carbohydrate Polymers, 2021, 266: 118128.
|
31 |
Cai J, Chen X J, Wang X J, et al. High-water-absorbing calcium alginate fibrous scaffold fabricated by microfluidic spinning for use in chronic wound dressings[J]. RSC Advances, 2018, 8(69): 39463-39469.
|
32 |
Tian Y, Wang J C, Wang L Q. Microfluidic fabrication of bioinspired cavity-microfibers for 3D scaffolds[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29219-29226.
|
33 |
Yu Y R, Chen G P, Guo J H, et al. Vitamin metal-organic framework-laden microfibers from microfluidics for wound healing[J]. Materials Horizons, 2018, 5(6): 1137-1142.
|
34 |
Xie R X, Liang Z, Ai Y J, et al. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes[J]. Nature Protocols, 2021, 16(2): 937-964.
|