化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1658-1672.DOI: 10.11949/0438-1157.20211567
收稿日期:
2021-11-03
修回日期:
2022-01-19
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
周利
作者简介:
张淑君(1997—),女,硕士研究生,基金资助:
Shujun ZHANG(),Shihui WANG,Xin ZHANG,Xu JI,Yiyang DAI,Yagu DANG,Li ZHOU()
Received:
2021-11-03
Revised:
2022-01-19
Online:
2022-04-05
Published:
2022-04-25
Contact:
Li ZHOU
摘要:
当前炼油企业氢气需求持续增长,导致炼厂成本及生产过程温室气体排放增加,炼油企业通过增设轻烃回收单元对氢气和轻烃组分进行回收利用,能有效缓解这一现状。因此,在氢气网络优化中有必要考虑轻烃回收单元。本研究提出了一种集成轻烃回收单元的氢气网络多目标数学规划模型,对轻烃回收单元采用代理模型建模方法,解决了直接嵌入严格机理模型可能导致的高计算成本问题,以总年度费用最小为优化目标,同时将系统的环境影响也纳入优化目标。实例计算表明,所提出的方法能够有效降低氢气网络的年度费用及温室气体排放,并揭示了集成轻烃回收单元的氢气网络经济性能与环境影响之间的权衡关系,为工业应用提供了一定的理论基础。
中图分类号:
张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672.
Shujun ZHANG, Shihui WANG, Xin ZHANG, Xu JI, Yiyang DAI, Yagu DANG, Li ZHOU. Surrogate-assisted multi-objective optimization of hydrogen networks with light hydrocarbon recovery unit[J]. CIESC Journal, 2022, 73(4): 1658-1672.
氢源供氢 | |||||||||
---|---|---|---|---|---|---|---|---|---|
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 44.53 | 95.57 | 1.49 | 1.26 | 0.87 | 0.75 | 0.05 | 0 | 2 |
DHT-2 | 274.43 | 97.38 | 0.88 | 0.74 | 0.52 | 0.45 | 0.03 | 0 | 2 |
GHT | 163.27 | 97.65 | 0.80 | 0.67 | 0.47 | 0.40 | 0.02 | 0 | 2 |
KHT-1 | 37.62 | 95.30 | 1.58 | 1.34 | 0.93 | 0.80 | 0.05 | 0 | 2 |
KHT-2 | 60.32 | 99.01 | 0.34 | 0.28 | 0.19 | 0.05 | 0.01 | 0 | 2 |
氢阱进口 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 990.53 | 87.60 | 6.59 | 3.41 | 1.61 | 0.50 | 0.24 | 0.05 | 6.72 |
DHT-2 | 1004.5 | 90.00 | 5.21 | 2.75 | 1.34 | 0.47 | 0.19 | 0.04 | 7.00 |
GHT | 811.8 | 89.32 | 5.62 | 2.94 | 1.41 | 0.46 | 0.21 | 0.04 | 2.70 |
KHT-1 | 60.70 | 92.23 | 3.58 | 2.17 | 1.20 | 0.68 | 0.12 | 0.02 | 3.83 |
KHT-2 | 83.43 | 95.75 | 2.14 | 1.18 | 0.60 | 0.25 | 0.07 | 0.01 | 5.45 |
高分气 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力 /MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 797.50 | 86.00 | 8.28 | 3.92 | 1.25 | 0 | 0 | 0.55 | 5.00 |
DHT-2 | 753.00 | 91.00 | 5.14 | 2.30 | 0.66 | 0.35 | 0.14 | 0.41 | 6.40 |
GHT | 725.00 | 83.00 | 7.20 | 4.40 | 3.10 | 1.10 | 0.60 | 0.60 | 2.00 |
KHT-1 | 45.50 | 91.70 | 1.84 | 2.86 | 1.99 | 0.70 | 0.55 | 0.36 | 3.00 |
KHT-2 | 61.30 | 87.80 | 6.69 | 2.31 | 1.26 | 0.94 | 0.60 | 0.40 | 4.80 |
低分气 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 36.00 | 52.30 | 8.08 | 13.52 | 10.80 | 8.22 | 5.98 | 1.10 | 1.1 |
DHT-2 | 43.40 | 50.31 | 16.71 | 11.51 | 8.71 | 7.28 | 3.78 | 1.70 | 1.2 |
GHT | 19.80 | 42.32 | 20.51 | 15.02 | 9.21 | 8.56 | 2.58 | 1.80 | 1.0 |
KHT-1 | 5.20 | 35.21 | 32.36 | 8.64 | 9.73 | 7.90 | 4.66 | 1.50 | 1.0 |
KHT-2 | 5.60 | 67.60 | 10.65 | 8.36 | 5.98 | 4.67 | 0.94 | 1.80 | 1.0 |
表1 氢气网络中的相关流股的详细信息
Table 1 Detailed information of related streams in the hydrogen network
氢源供氢 | |||||||||
---|---|---|---|---|---|---|---|---|---|
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 44.53 | 95.57 | 1.49 | 1.26 | 0.87 | 0.75 | 0.05 | 0 | 2 |
DHT-2 | 274.43 | 97.38 | 0.88 | 0.74 | 0.52 | 0.45 | 0.03 | 0 | 2 |
GHT | 163.27 | 97.65 | 0.80 | 0.67 | 0.47 | 0.40 | 0.02 | 0 | 2 |
KHT-1 | 37.62 | 95.30 | 1.58 | 1.34 | 0.93 | 0.80 | 0.05 | 0 | 2 |
KHT-2 | 60.32 | 99.01 | 0.34 | 0.28 | 0.19 | 0.05 | 0.01 | 0 | 2 |
氢阱进口 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 990.53 | 87.60 | 6.59 | 3.41 | 1.61 | 0.50 | 0.24 | 0.05 | 6.72 |
DHT-2 | 1004.5 | 90.00 | 5.21 | 2.75 | 1.34 | 0.47 | 0.19 | 0.04 | 7.00 |
GHT | 811.8 | 89.32 | 5.62 | 2.94 | 1.41 | 0.46 | 0.21 | 0.04 | 2.70 |
KHT-1 | 60.70 | 92.23 | 3.58 | 2.17 | 1.20 | 0.68 | 0.12 | 0.02 | 3.83 |
KHT-2 | 83.43 | 95.75 | 2.14 | 1.18 | 0.60 | 0.25 | 0.07 | 0.01 | 5.45 |
高分气 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力 /MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 797.50 | 86.00 | 8.28 | 3.92 | 1.25 | 0 | 0 | 0.55 | 5.00 |
DHT-2 | 753.00 | 91.00 | 5.14 | 2.30 | 0.66 | 0.35 | 0.14 | 0.41 | 6.40 |
GHT | 725.00 | 83.00 | 7.20 | 4.40 | 3.10 | 1.10 | 0.60 | 0.60 | 2.00 |
KHT-1 | 45.50 | 91.70 | 1.84 | 2.86 | 1.99 | 0.70 | 0.55 | 0.36 | 3.00 |
KHT-2 | 61.30 | 87.80 | 6.69 | 2.31 | 1.26 | 0.94 | 0.60 | 0.40 | 4.80 |
低分气 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 36.00 | 52.30 | 8.08 | 13.52 | 10.80 | 8.22 | 5.98 | 1.10 | 1.1 |
DHT-2 | 43.40 | 50.31 | 16.71 | 11.51 | 8.71 | 7.28 | 3.78 | 1.70 | 1.2 |
GHT | 19.80 | 42.32 | 20.51 | 15.02 | 9.21 | 8.56 | 2.58 | 1.80 | 1.0 |
KHT-1 | 5.20 | 35.21 | 32.36 | 8.64 | 9.73 | 7.90 | 4.66 | 1.50 | 1.0 |
KHT-2 | 5.60 | 67.60 | 10.65 | 8.36 | 5.98 | 4.67 | 0.94 | 1.80 | 1.0 |
单元 | 间距/m | ||||
---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 | |
CCR | 500 | 680 | 1000 | 1150 | 1280 |
H2 Plant | 250 | 430 | 1250 | 1400 | 1150 |
DHT-1 | 0 | 180 | 890 | 1000 | 850 |
DHT-2 | 180 | 0 | 700 | 820 | 700 |
GHT | 890 | 700 | 0 | 250 | 400 |
KHT-1 | 1000 | 820 | 250 | 0 | 150 |
KHT-2 | 850 | 700 | 400 | 150 | 0 |
PSA | 480 | 300 | 510 | 760 | 910 |
表2 案例中各单元之间的管道距离
Table 2 The pipe distance between the units in the case
单元 | 间距/m | ||||
---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 | |
CCR | 500 | 680 | 1000 | 1150 | 1280 |
H2 Plant | 250 | 430 | 1250 | 1400 | 1150 |
DHT-1 | 0 | 180 | 890 | 1000 | 850 |
DHT-2 | 180 | 0 | 700 | 820 | 700 |
GHT | 890 | 700 | 0 | 250 | 400 |
KHT-1 | 1000 | 820 | 250 | 0 | 150 |
KHT-2 | 850 | 700 | 400 | 150 | 0 |
PSA | 480 | 300 | 510 | 760 | 910 |
单元 | ||
---|---|---|
DHT-1 | 87.60 | 0.15 |
DHT-2 | 90.00 | 0.15 |
GHT | 86.83 | 0.15 |
KHT-1 | 92.23 | 0.15 |
KHT-2 | 89.50 | 0.15 |
表3 氢阱入口流股的浓度约束
Table 3 Concentration constraint of the inlet stream of the hydrogen sink
单元 | ||
---|---|---|
DHT-1 | 87.60 | 0.15 |
DHT-2 | 90.00 | 0.15 |
GHT | 86.83 | 0.15 |
KHT-1 | 92.23 | 0.15 |
KHT-2 | 89.50 | 0.15 |
输入变量 | 下限 | 上限 |
---|---|---|
157.48 | 236.22 | |
0.62 | 0.94 | |
47.49 | 71.24 | |
39.68 | 59.52 | |
29.68 | 44.53 | |
24.37 | 36.56 | |
13.12 | 19.68 | |
100.00 | 250.00 |
表4 轻烃回收单元吸收塔输入变量范围
Table 4 Input variable range of absorption tower of light hydrocarbon recovery unit
输入变量 | 下限 | 上限 |
---|---|---|
157.48 | 236.22 | |
0.62 | 0.94 | |
47.49 | 71.24 | |
39.68 | 59.52 | |
29.68 | 44.53 | |
24.37 | 36.56 | |
13.12 | 19.68 | |
100.00 | 250.00 |
装置 | 输出变量 | RMSE | R2 |
---|---|---|---|
吸收塔 | 5.40×10-3 | 0.99 | |
8.60×10-3 | |||
1.28×10-2 | |||
1.39×10-1 | |||
2.01×10-1 | |||
脱乙烷塔 | 3.07×10-9 | 0.99 | |
2.66×10-4 | |||
1.29×10-6 | |||
3.01×10-8 | |||
2.94×10-9 | |||
1.21×10-1 | |||
4.50×10-1 | |||
脱丁烷塔 | 4.27×10-8 | 0.99 | |
1.82×10-8 | |||
1.44×10-5 | |||
3.32×10-8 | |||
4.29×10-9 | |||
1.18×10-0 | |||
3.31×10-0 |
表5 轻烃回收单元模型的验证结果
Table 5 Validation results of light hydrocarbon recovery unit model
装置 | 输出变量 | RMSE | R2 |
---|---|---|---|
吸收塔 | 5.40×10-3 | 0.99 | |
8.60×10-3 | |||
1.28×10-2 | |||
1.39×10-1 | |||
2.01×10-1 | |||
脱乙烷塔 | 3.07×10-9 | 0.99 | |
2.66×10-4 | |||
1.29×10-6 | |||
3.01×10-8 | |||
2.94×10-9 | |||
1.21×10-1 | |||
4.50×10-1 | |||
脱丁烷塔 | 4.27×10-8 | 0.99 | |
1.82×10-8 | |||
1.44×10-5 | |||
3.32×10-8 | |||
4.29×10-9 | |||
1.18×10-0 | |||
3.31×10-0 |
1 | 周逸江. 国际组织自主性与全球气候治理中的联合国: 聚焦2019年联合国气候行动峰会[J]. 国际论坛, 2020, 22(5): 76-96, 158. |
Zhou Y J. The autonomy of international organizations and the united nations in global climate governance: the case of the 2019 UN global climate action summit[J]. International Forum, 2020, 22(5): 76-96, 158. | |
2 | 陈卫东. 碳中和是一场没有硝烟的全球博弈[J]. 中国石油和化工产业观察, 2021(8): 60-61. |
Chen W D. Carbon neutrality is a global game without gunpowder smoke [J]. China Petrochemical Industry Observer, 2021(8): 60-61. | |
3 | 周利. 炼油企业资源网络的集成优化方法研究[D]. 杭州: 浙江大学, 2015. |
Zhou L. Integrated optimization of resource networks in refinery[D]. Hangzhou: Zhejiang University, 2015. | |
4 | 魏莉莉. 炼油厂氢气系统稳定性的研究[D]. 杭州: 浙江大学, 2018. |
Wei L L. Stability optimization of hydrogen networks in refinery[D]. Hangzhou: Zhejiang University, 2018. | |
5 | Zhou L, Liao Z W, Wang J D, et al. Optimal design of sustainable hydrogen networks[J]. International Journal of Hydrogen Energy, 2013, 38(7): 2937-2950. |
6 | Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769. |
7 | Foo D C Y, Manan Z A. Setting the minimum utility gas flowrate targets using cascade analysis technique[J]. Industrial & Engineering Chemistry Research, 2006, 45(17): 5986-5995. |
8 | Zhao Z H, Liu G L, Feng X. New graphical method for the integration of hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2006, 45(19): 6512-6517. |
9 | Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98. |
10 | Liao Z W, Wang J D, Yang Y R, et al. Integrating purifiers in refinery hydrogen networks: a retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3): 233-241. |
11 | Liao Z W, Tu G N, Lou J Y, et al. The influence of purifier models on hydrogen network optimization: insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5243-5249. |
12 | 梁肖强, 刘永忠, 张亮. 集中式提纯器的设置与具有中间等级氢气网络的优化[J]. 化工进展, 2014, 33(3): 577-582. |
Liang X Q, Liu Y Z, Zhang L. Installation of a centralized purifier and optimization of hydrogen network with intermediate levels[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 577-582. | |
13 | Zhou L, Liao Z W, Wang J D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18163-18174. |
14 | Xia Z P, Wang S H, Zhou L, et al. Surrogate-assisted optimization of refinery hydrogen networks with hydrogen sulfide removal[J]. Journal of Cleaner Production, 2021, 310: 127477. |
15 | Jia X X, Liu G L. Optimization of hydrogen networks with multiple impurities and impurity removal[J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1236-1242. |
16 | 焦云强, 苏宏业, 侯卫锋. 炼油厂氢气网络柔性优化[J]. 化工学报, 2012, 63(9): 2739-2748. |
Jiao Y Q, Su H Y, Hou W F. Flexible optimization of refinery hydrogen network[J]. CIESC Journal, 2012, 63(9): 2739-2748. | |
17 | Lou J Y, Liao Z W, Jiang B B, et al. Robust optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1210-1219. |
18 |
Deng C, Lu X T, Zhang Q X, et al. Fuzzy optimization design of multicomponent refinery hydrogen network[J]. Chinese Journal of Chemical Engineering, 2021,DOI:10.1016/j.cjche.2021.04.014 .
DOI |
19 | 蒋迎花, 韩儒松, 康丽霞, 等. 厂际氢气网络多周期集成的分步优化方法[J]. 化工学报, 2021, 72(9): 4816-4829. |
Jiang Y H, Han R S, Kang L X, et al. Step-wise approach to integrate inter-plant hydrogen networks under multi-period operations[J]. CIESC Journal, 2021, 72(9): 4816-4829. | |
20 | 朱美倩. 炼厂气组合分离工艺设计与氢气系统优化[D]. 北京: 中国石油大学(北京), 2019. |
Zhu M Q. Design of hybrid separation process for refinery-off gas and optimization of hydrogen system[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
21 | 李雪静, 乔明, 郑轶丹. 世界炼油工业二氧化碳减排进展[J]. 中外能源, 2010, 15(5): 64-70. |
Li X J, Qiao M, Zheng Y D. Advances in CO2 emission reduction in global refining industry[J]. Sino-Global Energy, 2010, 15(5): 64-70. | |
22 | Deng C, Zhu M Q, Liu J, et al. Systematic retrofit method for refinery hydrogen network with light hydrocarbons recovery[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19391-19404. |
23 | Yang M B, Feng X, Zhao L. Coupling pinch analysis and rigorous process simulation for hydrogen networks with light hydrocarbon recovery[J]. Chinese Journal of Chemical Engineering, 2021, 40: 141-148. |
24 | Bhosekar A, Ierapetritou M. Advances in surrogate based modeling, feasibility analysis, and optimization: a review[J]. Computers & Chemical Engineering, 2018, 108: 250-267. |
25 | Wang S H, Zhou L, Ji X, et al. A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16798-16812. |
26 | Li H R, Liao Z W, Sun J Y, et al. Simultaneous design of hydrogen allocation networks and PSA inside refineries[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4712-4720. |
27 | 王红光, 王立国. 炼厂干气回收轻烃技术评述[J]. 炼油技术与工程, 2009, 39(12): 8-11. |
Wang H G, Wang L G. Recovery of light olefins from refinery dry-gas[J]. Petroleum Refinery Engineering, 2009, 39(12): 8-11. | |
28 | Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13. |
29 | Garud S S, Karimi I A, Kraft M. Design of computer experiments: a review[J]. Computers & Chemical Engineering, 2017, 106: 71-95. |
30 | Elkamel A, Alhajri I, Almansoori A, et al. Integration of hydrogen management in refinery planning with rigorous process models and product quality specifications[J]. International Journal of Process Systems Engineering, 2011, 1(3/4): 302. |
31 | 牛亚群, 董康银, 姜洪殿, 等. 炼油企业碳排放估算模型及应用[J]. 环境工程, 2017, 35(3): 163-167. |
Niu Y Q, Dong K Y, Jiang H D, et al. Integrated carbon dioxide emissions evaluation method of Chinese petroleum refining enterprises[J]. Environmental Engineering, 2017, 35(3): 163-167. | |
32 | Geoffrion A M. Proper efficiency and the theory of vector maximization[J]. Journal of Mathematical Analysis and Applications, 1968, 22(3): 618-630. |
33 | Davisson W I. Public investment criteria[J]. Land Economics, 1964, 40(2): 153. |
34 | Rosenberg R S. Simulation of genetic populations with biochemical properties(II):Selection of crossover probabilities[J]. Mathematical Biosciences, 1970, 8(1/2): 1-37. |
35 | Kim I Y, de Weck O L. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation[J]. Structural and Multidisciplinary Optimization, 2005, 29(2): 149-158. |
36 | Brook A, Kendrick D, GAMS Meeraus A., user's guide a [J]. ACM SIGNUM Newsletter, 1988, 23(3/4): 10-11. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[5] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[6] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[7] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[8] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[9] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[10] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[11] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[12] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[13] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[14] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[15] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||