化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2438-2451.DOI: 10.11949/0438-1157.20211854
收稿日期:
2021-12-31
修回日期:
2022-03-29
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
刘明言
作者简介:
马永丽(1989—),女,博士,讲师,基金资助:
Yongli MA1(),Mingyan LIU1,2(),Zongding HU1
Received:
2021-12-31
Revised:
2022-03-29
Online:
2022-06-05
Published:
2022-06-30
Contact:
Mingyan LIU
摘要:
气液固流化床是一类重要的多相反应器,在化工及相关过程工业中有着广泛的应用。然而,由于对该类反应器内复杂的多相流动结构的定量描述十分有限,目前其设计和放大仍主要依赖经验,致使放大成功率低,反应结果达不到预期效果。因此,建立和完善气液固流化床内的三相流动机理模型,是实现该类反应器科学设计和放大的关键环节。对气液固流化床内的三相流动机理模型的研究进展进行了分析,着重总结了三相流动介尺度机理模型研究的新进展,并指出了存在的问题和进一步研究的方向,希望为该类反应器的基础研究和工业应用提供参考。
中图分类号:
马永丽, 刘明言, 胡宗定. 气液固流化床流动介尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2438-2451.
Yongli MA, Mingyan LIU, Zongding HU. Development of flow mesoscale modeling of the gas-liquid-solid fluidized beds[J]. CIESC Journal, 2022, 73(6): 2438-2451.
1 | Stewart P S B, Davidson J F. Three-phase fluidization: water, particles and air [J]. Chemical Engineering Science, 1964, 19(4): 319-321. |
2 | Østergaard K. On bed porosity in gas-liquid fluidization[J]. Chemical Engineering Science, 1965, 20(2): 165-167. |
3 | Bhatia V K, Epstein N. Three-phase fluidization: a generalized wake model [C]// Fluidization and Its Application: Proceedings of the International Symposium. Toulouse, France: Cepadues-Editions, 1974: 380-392. |
4 | 胡宗定, 张瑛, 黄璐, 等. 气-液-固三相流化床流动特性的研究[J]. 天津大学学报, 1983, 16(1): 15-24. |
Hu Z D, Zhang Y, Huang L, et al. A study of the hydrodynamical characteristics of three-phase fluidized beds[J]. Journal of Tianjin University (Science and Technology), 1983, 16(1): 15-24. | |
5 | 胡宗定, 于宝田. 气液固三相流化工程[J]. 化学工程, 1986, 14(2): 20-27. |
Hu Z D, Yu B T. Gas-liquid-solid fluidization engineering [J]. Chemical Engineering (China), 1986, 14(2): 20-27. | |
6 | Fan L S. Gas-Liquid-Solid Fluidization Engineering [M]. Boston: Butterworth- Heinemann,1989. |
7 | Fan L S, Kreischer B E, Tsuchiya K. Recent advances in gas-liquid-solid fluidization: fundamentals and applications[C]// Proceedings of the AIChE Annual Meeting. Amsterdam, Netherlands: Elsevier, 1989: 105-169. |
8 | El-Temtamy S A, Epstein N. Simultaneous solids entrainment and de-entrainment above a three-phase fluidized bed [M]//Grace J R, Matsen J M. Fluidization. New York: Plenum Press, 1980: 519-528. |
9 | Jean R H, Fan L S. On the particle terminal velocity in a gas-liquid medium with liquid as the continuous phase[J]. The Canadian Journal of Chemical Engineering, 1987, 65(6): 881-886. |
10 | Fan L S, Jean R H, Kitano K. On the operating regimes of cocurrent upward gas-liquid-solid systems with liquid as the continuous phase[J]. Chemical Engineering Science, 1987, 42(7): 1853-1855. |
11 | Chen Y M, Fan L S. Drift flux in gas-liquid-solid fluidized systems from the dynamics of bed collapse[J]. Chemical Engineering Science, 1990, 45(4): 935-945. |
12 | 胡宗定, 王一平, 白孟田, 等. 气液固三相流化床相含率四区模型的研究[J]. 化工学报, 1989,40(2):131-145. |
Hu Z D, Wang Y P, Bai M T, et al. A four-region model to calculate the phase holdups of gas-liquid-solid three-phase fluidized bed[J]. Journal of Chemical Industry and Engineering (China), 1989,40(2):131-145. | |
13 | Morooka S, Uchida K, Kato Y. Recirculating turbulent flow of liquid in gas-liquid-solid fluidized bed[J]. Journal of Chemical Engineering of Japan, 1982, 15(1): 29-34. |
14 | 李静海. 两相流多尺度作用模型和能量最小方法[D]. 北京: 中国科学院化工冶金研究所, 1987. |
Li J H. Multi-scale modeling and method of energy minimization for particle-fluid two phase flow[D]. Beijing: Institute of Chemical Metallurgy, Academia Sinica, 1987. | |
15 | Li J H, Huang W L. Towards Mesoscience [M]. Berlin, Germany: Springer, 2014: 51-61. |
16 | Yang N, Chen J H, Ge W, et al. A conceptual model for analyzing the stability condition and regime transition in bubble columns[J]. Chemical Engineering Science, 2010, 65(1): 517-526. |
17 | Li J H, Wen L X, Ge W, et al. Dissipative structure in concurrent-up gas-solid flow[J]. Chemical Engineering Science, 1998, 53(19): 3367-3379. |
18 | Xu G W, Li J H. Analytical solution of the energy-minimization multi-scale model for gas-solid two-phase flow[J]. Chemical Engineering Science, 1998, 53(7): 1349-1366. |
19 | Yang N, Chen J H, Zhao H, et al. Explorations on the multi-scale flow structure and stability condition in bubble columns[J]. Chemical Engineering Science, 2007, 62(24): 6978-6991. |
20 | Xu G W, Li J H. Multi-scale interfacial stresses in heterogeneous particle-fluid systems[J]. Chemical Engineering Science, 1998, 53(18): 3335-3339. |
21 | Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80. |
22 | Ge W, Li J H. Physical mapping of fluidization regimes—the EMMS approach[J]. Chemical Engineering Science, 2002, 57(18): 3993-4004. |
23 | Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach— extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231. |
24 | Liu M Y, Li J H, Kwauk M. Application of the energy-minimization multi-scale method to gas-liquid-solid fluidized beds[J]. Chemical Engineering Science, 2001, 56(24): 6805-6812. |
25 | Jin G D. Multi-scale modeling of gas-liquid-solid three-phase fluidized beds using the EMMS method[J]. Chemical Engineering Journal, 2006, 117(1): 1-11. |
26 | Ma Y L, Liu M Y, Zhang Y. An improved meso-scale flow model of gas-liquid-solid fluidized beds[J]. Chemical Engineering Science, 2018, 179: 243-256. |
27 | Ma Y L, Liu M Y, Zhang Y. Axial meso-scale modeling of gas-liquid-solid fluidized beds[J]. Chemical Engineering Science, 2019, 196: 188-201. |
28 | Ma Y L, Liu M Y, Zhou X H, et al. Axial meso-scale modeling of gas-liquid-solid circulating fluidized beds[J]. Chemical Engineering Science, 2019, 208: 115139. |
29 | Ma Y L, Liu M Y, Li C, et al. Mesoscale model of radial hydrodynamics for fluidizing small particles with low solid holdup in gas-liquid-solid circulating fluidized bed[J]. Chemical Engineering Science, 2022, 250: 117413. |
30 | Gidaspow D, Bahary M, Jayaswal U K. Hydrodynamic models for gas-liquid-solid fluidization [C]// Crowe C T. Numerical Methods in Multiphase Flows, FED 185. New York: ASME, 1994: 117-124. |
31 | Mitra-Majumdar D, Farouk B, Shah Y T. Hydrodynamic modeling of three-phase flows through a vertical column[J]. Chemical Engineering Science, 1997, 52(24): 4485-4497. |
32 | Li Y, Zhang J P, Fan L S. Numerical simulation of gas-liquid-solid fluidization systems using a combined CFD-VOF-DPM method: bubble wake behavior[J]. Chemical Engineering Science, 1999, 54(21): 5101-5107. |
33 | 罗运柏, 胡宗定. 烟气脱硫三相流化床反应器的数学模拟与预测放大[J]. 化工学报, 2002, 53(2): 122-127. |
Luo Y B, Hu Z D. Scale-up and modeling of countercurrent three-phase fluidized reactor for flue gas desulfurization[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(2): 122-127. | |
34 | Zhou X H, Ma Y L, Liu M Y, et al. CFD-PBM simulations on hydrodynamics and gas-liquid mass transfer in a gas-liquid-solid circulating fluidized bed[J]. Powder Technology, 2020, 362: 57-74. |
35 | Efremov G I, Vakhrushev I A. A study of the hydrodynamics of three-phase fluidized beds[J]. Chemistry and Technology of Fuels and Oils, 1969, 5: 541-545. |
36 | Rigby G R, Capes C E. Bed expansion and bubble wakes in three-phase fluidization[J]. The Canadian Journal of Chemical Engineering, 1970, 48(4): 343-348. |
37 | El-Temtamy S A, Epstein N. Bubble wake solids content in three-phase fluidized beds[J]. International Journal of Multiphase Flow, 1978, 4(1): 19-31. |
38 | Darton R C, Harrison D. Gas and liquid hold-up in three-phase fluidization[J]. Chemical Engineering Science, 1975, 30(5/6): 581-586. |
39 | Muroyama K, Hashimoto K, Toshima M, et al. Axial liquid dispersion in gas-liquid co-current flow through packed beds[J]. Kagaku Kogaku Ronbunshu, 1976, 2(3): 235-242. |
40 | Baker C G J, Kim S D, Bergougnou M A. Wake characteristics of three-phase fluidized beds[J]. Powder Technology, 1977, 18(2): 201-207. |
41 | Khang S J, Schwartz J G, Buttke R D. A practical wake model for estimating bed expansion and holdup in three phase fluidized systems[J]. AIChE Symposium Series, 1983,79 (222): 47-54. |
42 | Chern S H, Fan L S, Muroyama K. Hydrodynamics of cocurrent gas-liquid-solid semifluidization with a liquid as the continuous phase[J]. AIChE Journal, 1984, 30(2): 288-294. |
43 | Fan L, Tsuchiya K. Bubble Wake Dynamics in Liquids and Liquid-solid Suspensions[M]. Amsterdam: Elsevier, 1990. |
44 | Muroyama K, Fukuma M, Yasunishi A. Wall-to-bed heat transfer coefficient in gas-liquid-solid fluidized beds[J]. The Canadian Journal of Chemical Engineering, 1984, 62(2): 199-208. |
45 | Page R E, Harrison D. Particle entrainment from a three-phase fluidized bed [C]// Fluidization and Its Application: Proceedings of the International Symposium. Toulouse, France: Cepadues-Editions, 1974: 393-406. |
46 | Hu T T, Yu B, Wang Y A. four-region model to account radial distribution of phase holdup [C]// Fluidization Ⅴ: Proceedings of the Fifth Engineering Foundation Conference on Fluidization. Elsinore, Denmark: Engineering Foundation Press, 1986: 353-356. |
47 | Tian S H, Sun J Y, Fan X Q, et al. A volatile spray zone model and experimentation in a gas-solid fluidized bed with liquid injection[J]. Chemical Engineering Science, 2021, 231: 116306. |
48 | Matsuura A, Fan L S. Distribution of bubble properties in a gas-liquid-solid fluidized bed[J]. AIChE Journal, 1984, 30(6): 894-903. |
49 | Nacef S, Wild G, Laurent A, et al. Scale effects in gas-liquid-solid fluidization [J]. International Chemical Engineering, 1992, 32(1): 51-72. |
50 | Liang W G, Yu Z, Jin Y, et al. The phase holdups in a gas-liquid-solid circulating fluidized bed[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 58(3): 259-264. |
51 | Liang W, Wu Q, Yu Z, et al. Hydrodynamics of a gas-liquid-solid three phase circulating fluidized bed[J]. The Canadian Journal of Chemical Engineering, 1995, 73(5): 656-661. |
52 | Liang W G, Wu Q W, Yu Z Q, et al. Flow regimes of the three-phase circulating fluidized bed[J]. AIChE Journal, 1995, 41(2): 267-271. |
53 | Kim S D, Baker C G I, Bergougnou M A. Phase holdup characteristics of three phase fluidized beds[J]. The Canadian Journal of Chemical Engineering, 1975, 53(1): 134-139. |
54 | Kato Y, Nishiwaki A, Fukuda T, et al. The behavior of suspended solid particles and liquid in bubble columns[J]. Journal of Chemical Engineering of Japan, 1972, 5(2): 112-118. |
55 | Imafuku K, Wang T Y, Koide K, et al. The behavior of suspended solid particles in the bubble column[J]. Journal of Chemical Engineering of Japan, 1968, 1(2): 153-158. |
56 | Smith D N, Ruether J A. Dispersed solid dynamics in a slurry bubble column[J]. Chemical Engineering Science, 1985, 40(5): 741-753. |
57 | Cova D R. Catalyst suspension in gas-agitated tubular reactors[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(1): 20-25. |
58 | Kojima H, Asano K. Hydrodynamic characteristics of suspension-bubble column[J]. Kagaku Kōgaku Ronbunshū,1980, 6(1): 46-52. |
59 | Matsumoto T, Hidaka N, Morooka S. Axial distribution of solid holdup in bubble column for gas-liquid-solid systems[J]. AIChE Journal, 1989, 35(10): 1701-1709. |
60 | Tsutsumi A, Charinpanitkul T, Yoshida K. Prediction of solid concentration profiles in three-phase reactors by a wake shedding model[J]. Chemical Engineering Science, 1992, 47(13/14): 3411-3418. |
61 | 韩社教, 金涌, 俞芷青, 等. 气液固三相循环流化床中气固相含率轴径向的分布[J]. 高校化学工程学报, 1997, 11(3): 276-280. |
Han S J, Jin Y, Yu Z Q, et al. Axial and radial distributions of gas and solid hold up in gas liquid solid three phase circulating fluidized bed[J]. Journal of Chemical Engineering of Chinese Universities, 1997, 11(3): 276-280. | |
62 | Kato Y, Morooka S, Kago T, et al. Axial holdup distributions of gas and solid particles in three-phase fluidized bed for gas-liquid(slurry)-solid systems[J]. Journal of Chemical Engineering of Japan, 1985, 18(4): 308-313. |
63 | Kreischer B E, Moritomi H, Fan L S. Wake solids holdup characteristics behind a single bubble in a three-dimensional liquid-solid fluidized[J]. International Journal of Multiphase Flow, 1990, 16(2): 187-200. |
64 | Lee S L P, de Lasa H I. Phase holdups in three-phase fluidized beds[J]. AIChE Journal, 1987, 33(8): 1359-1370. |
65 | Razzak S A, Barghi S, Zhu J X. Axial hydrodynamic studies in a gas-liquid-solid circulating fluidized bed riser[J]. Powder Technology, 2010, 199(1): 77-86. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[5] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[6] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[7] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[8] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[9] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[10] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[11] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[12] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[15] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 521
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 501
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||