化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3708-3719.DOI: 10.11949/0438-1157.20220264
收稿日期:
2022-03-01
修回日期:
2022-07-09
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
乔金硕
作者简介:
艾承燚(1997—),男,硕士研究生,18811377836@163.com
基金资助:
Chengyi AI(), Jinshuo QIAO(), Zhenhuan WANG, Wang SUN, Kening SUN
Received:
2022-03-01
Revised:
2022-07-09
Online:
2022-08-05
Published:
2022-09-06
Contact:
Jinshuo QIAO
摘要:
开发高性能阳极材料对于固体碳为燃料的固体氧化物燃料电池(solid oxide fuel cells, SOFCs)的发展意义重大。本文研究了原位析出Fe以及FeNi合金的PrBaFe2O6-δ (PBF)基层状双钙钛矿材料在SOFCs中的应用。通过溶胶-凝胶法制备了Ni掺杂的 (PrBa)0.95Fe1.7Ti0.2Ni0.1O6-δ (PBFTN)阳极材料。XRD表明合成的材料呈现钙钛矿结构且在阳极还原性气氛下保持稳定。XRD、SEM、TEM、XPS结果表明在还原性气氛下材料表面析出大量均匀分布的纳米金属颗粒。当采用纯的纳米活性炭为燃料时,电解质支撑型的以PBFTN为阳极的单电池在800℃下实现了698 mW·cm-2的最大功率密度,性能十分优异,表明其是一种具有潜力的SOFCs阳极材料。
中图分类号:
艾承燚, 乔金硕, 王振华, 孙旺, 孙克宁. 原位析出纳米合金的PrBaFe2O6-δ 基阳极构筑及其在固体碳燃料电池中的应用研究[J]. 化工学报, 2022, 73(8): 3708-3719.
Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell[J]. CIESC Journal, 2022, 73(8): 3708-3719.
材料 | 空间群 | a/Å | b/Å | c/Å | V/Å3 |
---|---|---|---|---|---|
合成的PBFT | P4/mmm | 3.936795 | 3.936795 | 7.878303 | 122.101 |
合成的PBFTN | P4/mmm | 3.928727 | 3.928727 | 7.866324 | 121.416 |
H2还原后的PBFTN | P4/mmm | 3.941746 | 3.941746 | 3.941746 | 122.980 |
表1 PBFT和PBFTN材料XRD数据精修后得到的晶体结构数据汇总
Table 1 Summary of Rietveld refinement results of XRD data for PBFT and PBFTN samples
材料 | 空间群 | a/Å | b/Å | c/Å | V/Å3 |
---|---|---|---|---|---|
合成的PBFT | P4/mmm | 3.936795 | 3.936795 | 7.878303 | 122.101 |
合成的PBFTN | P4/mmm | 3.928727 | 3.928727 | 7.866324 | 121.416 |
H2还原后的PBFTN | P4/mmm | 3.941746 | 3.941746 | 3.941746 | 122.980 |
材料 | 含量/% | 平均价态 | ||
---|---|---|---|---|
Fe4+ | Fe3+ | Fe2+ | ||
合成的PBFT | 14.9 | 64.9 | 20.2 | 2.95 |
H2还原后的PBFT | 13.5 | 58.9 | 27.6 | 2.87 |
合成的PBFTN | 20.0 | 64.5 | 15.5 | 3.05 |
H2还原后的PBFTN | 18.3 | 61.0 | 20.7 | 2.98 |
表2 PBFT和PBFTN中Fe4+/Fe3+/Fe2+含量
Table 2 Fe4+/Fe3+/Fe2+ content in PBFT and PBFTN
材料 | 含量/% | 平均价态 | ||
---|---|---|---|---|
Fe4+ | Fe3+ | Fe2+ | ||
合成的PBFT | 14.9 | 64.9 | 20.2 | 2.95 |
H2还原后的PBFT | 13.5 | 58.9 | 27.6 | 2.87 |
合成的PBFTN | 20.0 | 64.5 | 15.5 | 3.05 |
H2还原后的PBFTN | 18.3 | 61.0 | 20.7 | 2.98 |
材料 | Olat.(Fitting area) | Oads.(Fitting area) | [Oads./(Olat.+Oads.)]/% |
---|---|---|---|
合成的PBFT | 30708 | 41584 | 57.5 |
H2还原后的PBFT | 33947 | 34747 | 50.6 |
合成的PBFTN | 32529 | 43477 | 57.2 |
H2还原后的PBFTN | 28598 | 46487 | 61.9 |
表3 PBFT和PBFTN的O 1s的XPS分析
Table 3 XPS analysis of O 1s for PBFT and PBFTN
材料 | Olat.(Fitting area) | Oads.(Fitting area) | [Oads./(Olat.+Oads.)]/% |
---|---|---|---|
合成的PBFT | 30708 | 41584 | 57.5 |
H2还原后的PBFT | 33947 | 34747 | 50.6 |
合成的PBFTN | 32529 | 43477 | 57.2 |
H2还原后的PBFTN | 28598 | 46487 | 61.9 |
1 | Fan J L, Zhang H, Zhang X. Unified efficiency measurement of coal-fired power plants in China considering group heterogeneity and technological gaps[J]. Energy Economics, 2020, 88: 104751. |
2 | Cao D X, Sun Y, Wang G L. Direct carbon fuel cell: fundamentals and recent developments[J]. Journal of Power Sources, 2007, 167(2): 250-257. |
3 | Jiang C R, Ma J J, Corre G, et al. Challenges in developing direct carbon fuel cells[J]. Chemical Society Reviews, 2017, 46(10): 2889-2912. |
4 | Cao T Y, Huang K, Shi Y X, et al. Recent advances in high-temperature carbon–air fuel cells[J]. Energy & Environmental Science, 2017, 10(2): 460-490. |
5 | Zhou W, Jiao Y, Li S D, et al. Anodes for carbon-fueled solid oxide fuel cells[J]. ChemElectroChem, 2016, 3(2): 193-203. |
6 | Rady A C, Giddey S, Badwal S P S, et al. Review of fuels for direct carbon fuel cells[J]. Energy & Fuels, 2012, 26(3): 1471-1488. |
7 | Zhao X Y, Yao Q, Li S Q, et al. Studies on the carbon reactions in the anode of deposited carbon fuel cells[J]. Journal of Power Sources, 2008, 185(1): 104-111. |
8 | Qiao J S, Chen H T, Wang Z H, et al. Enhancing the catalytic activity of Y0.08Sr0.92TiO3– δ anodes through in situ Cu exsolution for direct carbon solid oxide fuel cells[J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13105-13112. |
9 | Ma M J, Qiao J S, Yang X X, et al. Enhanced stability and catalytic activity on layered perovskite anode for high-performance hybrid direct carbon fuel cells[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12938-12948. |
10 | Li S B, Jiang C R, Liu J, et al. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels[J]. Journal of Power Sources, 2018, 383: 10-16. |
11 | Ma M J, Yang X X, Ren R Z, et al. A highly active perovskite anode with an in situ exsolved nanoalloy catalyst for direct carbon solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(32): 17327-17335. |
12 | Gür T M. Critical review of carbon conversion in “carbon fuel cells”[J]. Chemical Reviews, 2013, 113(8): 6179-6206. |
13 | Ma M J, Yang X X, Qiao J S, et al. Progress and challenges of carbon-fueled solid oxide fuel cells anode[J]. Journal of Energy Chemistry, 2021, 56: 209-222. |
14 | Cai W Z, Cao D, Zhou M Y, et al. Sulfur-tolerant Fe-doped La0.3Sr0.7TiO3 perovskite as anode of direct carbon solid oxide fuel cells[J]. Energy, 2020, 211: 118958. |
15 | Li J W, Wei B, Wang C Q, et al. High-performance and stable La0.8Sr0.2Fe0.9Nb0.1O3- δ anode for direct carbon solid oxide fuel cells fueled by activated carbon and corn straw derived carbon[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12358-12367. |
16 | Xiao J, Han D, Yu F Y, et al. Characterization of symmetrical SrFe0.75Mo0.25O3- δ electrodes in direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2016, 688: 939-945. |
17 | Sengodan S, Choi S, Jun A, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nature Materials, 2015, 14(2): 205-209. |
18 | Choi S, Yoo S, Kim J, et al. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2- x Fe x O5+ δ [J]. Scientific Reports, 2013, 3: 2426. |
19 | Wang L J, Xie P C, Bian L Z, et al. Performance of Ca-doped GdBa1- x Ca x Fe2O5+ δ (x = 0, 0.1) as cathode materials for IT-SOFC application[J]. Catalysis Today, 2018, 318: 132-136. |
20 | Hou N J, Yao T T, Li P, et al. A-site ordered double perovskite with in situ exsolved core-shell nanoparticles as anode for solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6995-7005. |
21 | Chen T, Pang S L, Shen X Q, et al. Evaluation of Ba-deficient PrBa1– x Fe2O5+ δ oxides as cathode materials for intermediate-temperature solid oxide fuel cells[J]. RSC Advances, 2016, 6(17): 13829-13836. |
22 | Liu Y Y, Jia L C, Li J, et al. High-performance Ni in situ exsolved Ba(Ce0.9Y0.1)0.8Ni0.2O3- δ /Gd0.1Ce0.9O1.95 composite anode for SOFC with long-term stability in methane fuel[J]. Composites Part B: Engineering, 2020, 193: 108033. |
23 | Zhu T L, Troiani H E, Mogni L V, et al. Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2(3): 478-496. |
24 | Xu C M, Sun W, Ren R Z, et al. A highly active and carbon-tolerant anode decorated with in situ grown cobalt nano-catalyst for intermediate-temperature solid oxide fuel cells[J]. Applied Catalysis B: Environmental, 2021, 282: 119553. |
25 | Yang Y R, Wang Y R, Yang Z B, et al. Co-substituted Sr2Fe1.5Mo0.5O6- δ as anode materials for solid oxide fuel cells: achieving high performance via nanoparticle exsolution[J]. Journal of Power Sources, 2019, 438: 226989. |
26 | Xue S S, Shi N, Wan Y H, et al. Novel carbon and sulfur-tolerant anode material FeNi3@PrBa(Fe, Ni)1.9Mo0.1O5+ δ for intermediate temperature solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(38): 21783-21793. |
27 | Cowin P I, Petit C T G, Lan R, et al. Recent progress in the development of anode materials for solid oxide fuel cells[J]. Advanced Energy Materials, 2011, 1(3): 314-332. |
28 | Yang G M, Shen J, Chen Y B, et al. Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3- δ as a bi-functional electrode material for solid oxide fuel cells[J]. Journal of Power Sources, 2015, 298: 184-192. |
29 | Du Z H, Zhao H L, Yi S, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6- δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660-8669. |
30 | Sun Y F, Zhang Y Q, Hua B, et al. Molybdenum doped Pr0.5Ba0.5MnO3- δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material[J]. Journal of Power Sources, 2016, 301: 237-241. |
31 | Chen D J, Ran R, Zhang K, et al. Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+ δ cathode on samarium-doped ceria electrolyte[J]. Journal of Power Sources, 2009, 188(1): 96-105. |
32 | Stournari V, ten Donkelaar S F P, Malzbender J, et al. Creep behavior of perovskite-type oxides Ba0.5Sr0.5(Co0.8Fe0.2)1- x Zr x O3- δ [J]. Journal of the European Ceramic Society, 2015, 35(6): 1841-1846. |
33 | Fang S M, Yoo C Y, Bouwmeester H J M. Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3- δ membranes[J]. Solid State Ionics, 2011, 195(1): 1-6. |
34 | Zhai S, Xie H P, Chen B, et al. A rational design of FeNi alloy nanoparticles and carbonate-decorated perovskite as a highly active and coke-resistant anode for solid oxide fuel cells[J]. Chemical Engineering Journal, 2022, 430: 132615. |
35 | Hou Y T, Wang L J, Bian L Z, et al. High performance of Mo-doped La0.6Sr0.4Fe0.9Ni0.1O3- δ perovskites as anode for solid oxide fuel cells[J]. Electrochimica Acta, 2018, 292: 540-545. |
36 | Ding L M, Wang L X, Ding D, et al. Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3- δ perovskite cathode for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2017, 354: 26-33. |
37 | Merino N A, Barbero B P, Eloy P, et al. La1- x Ca x CoO3 perovskite-type oxides: identification of the surface oxygen species by XPS[J]. Applied Surface Science, 2006, 253(3): 1489-1493. |
38 | Figueiredo J L, Rivera-Utrilla J, Ferro-Garcia M A. Gasification of active carbons of different texture impregnated with nickel, cobalt and iron[J]. Carbon, 1987, 25(5): 703-708. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[6] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[7] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[8] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[9] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[10] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[11] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[12] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[13] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[14] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[15] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||