1 |
Lyu Y, Li C T, Du X Y, et al. Catalytic removal of toluene over manganese oxide-based catalysts: a review[J]. Environmental Science and Pollution Research International, 2020, 27(3): 2482-2501.
|
2 |
Ye Z, Giraudon J M, Nuns N, et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 154-166.
|
3 |
Porta P, Moretti G, Jacono M L, et al. Characterization of copper-manganese hydroxysalts and oxysalts[J]. J. Mater. Chem., 1991, 1(1): 129-135.
|
4 |
Güldenpfennig A, Distaso M, Peukert W. In situ investigations on the amorphous to crystalline phase transformation of precursors for methanol synthesis catalysts[J]. Chemical Engineering Journal, 2019, 369: 996-1004.
|
5 |
Liu Y, Jia L, Lin Y, et al. Catalytic combustion of toluene over Cu–Mn mixed oxide catalyst[J]. Journal of Chemical Engineering of Japan, 2018, 51(9):769-777.
|
6 |
Mirzaei A A, Shaterian H R, Habibi M, et al. Characterisation of copper-manganese oxide catalysts: effect of precipitate ageing upon the structure and morphology of precursors and catalysts[J]. Applied Catalysis A: General, 2003, 253(2): 499-508.
|
7 |
Hutchings G J, Mirzaei A A, Joyner R W, et al. Ambient temperature CO oxidation using copper manganese oxide catalysts prepared by coprecipitation: effect of ageing on catalyst performance[J]. Catalysis Letters, 1996, 42(1/2): 21-24.
|
8 |
Tanimu A, Jaenicke S, Alhooshani K. Heterogeneous catalysis in continuous flow microreactors: a review of methods and applications[J]. Chemical Engineering Journal, 2017, 327: 792-821.
|
9 |
Suryawanshi P L, Gumfekar S P, Bhanvase B A, et al. A review on microreactors: reactor fabrication, design, and cutting-edge applications[J]. Chemical Engineering Science, 2018, 189: 431-448.
|
10 |
Einaga H, Kiya A. Effect of aging on the CO oxidation properties of copper manganese oxides prepared by hydrolysis–coprecipitation using tetramethyl ammonium hydroxide[J]. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117(2): 521-536.
|
11 |
Clarke T J, Kondrat S A, Taylor S H. Total oxidation of naphthalene using copper manganese oxide catalysts[J]. Catalysis Today, 2015, 258: 610-615.
|
12 |
Clarke T J, Davies T E, Kondrat S A, et al. Mechanochemical synthesis of copper manganese oxide for the ambient temperature oxidation of carbon monoxide[J]. Applied Catalysis B: Environmental, 2015, 165: 222-231.
|
13 |
席世川. 激光拉曼光谱技术在南海裸露自生碳酸盐岩的原位和实验室分析中的应用[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2018.
|
|
Xi S C. Laser Raman spectroscopy application of exposed authigenic carbonates in the South China Sea for in situ detection and the analyses in laboratory[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2018.
|
14 |
Frost R L, Xi Y F, Scholz R, et al. Infrared and Raman spectroscopic characterization of the carbonate mineral weloganite-Sr3Na2Zr(CO3)6·3H2O and in comparison with selected carbonates[J]. Journal of Molecular Structure, 2013, 1039: 101-106.
|
15 |
刘欣蕊, 李林, 杨自强, 等. 羟基碳酸钐中羟基位置及振动方式研究[J]. 光谱学与光谱分析, 2019, 39(12): 3686-3691.
|
|
Liu X R, Li L, Yang Z Q, et al. Study on the position and vibrational mode of hydroxyl groups in samarium hydroxycarbonate[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3686-3691.
|
16 |
Behrens M, Schlögl R. How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2013, 639(15): 2683-2695.
|
17 |
Ahn C W, You Y W, Heo I, et al. Catalytic combustion of volatile organic compound over spherical-shaped copper-manganese oxide[J]. Journal of Industrial and Engineering Chemistry, 2017, 47: 439-445.
|
18 |
Grygar T, Rojka T, Bezdička P, et al. Voltammetric and X-ray diffraction analysis of the early stages of the thermal crystallization of mixed Cu, Mn oxides[J]. Journal of Solid State Electrochemistry, 2004, 8(4): 252-259.
|
19 |
Huang N, Qu Z P, Dong C, et al. Superior performance of α@β-MnO2 for the toluene oxidation: active interface and oxygen vacancy[J]. Applied Catalysis A: General, 2018, 560: 195-205.
|
20 |
Wei G C, Zhang Q L, Zhang D H, et al. The influence of annealing temperature on copper-manganese catalyst towards the catalytic combustion of toluene: the mechanism study[J]. Applied Surface Science, 2019, 497: 143777.
|
21 |
Ferrandon M, Carnö J, Järås S, et al. Total oxidation catalysts based on manganese or copper oxides and platinum or palladium (Ⅰ): Characterisation[J]. Applied Catalysis A: General, 1999, 180(1/2): 141-151.
|
22 |
Wang H P, Lu Y Y, Han Y X, et al. Enhanced catalytic toluene oxidation by interaction between copper oxide and manganese oxide in Cu-O-Mn/γ-Al2O3 catalysts[J]. Applied Surface Science, 2017, 420: 260-266.
|
23 |
Li D, Yu Q, Li S S, et al. The remarkable enhancement of CO-pretreated CuO-Mn2O3/γ-Al2O3 supported catalyst for the reduction of NO with CO: the formation of surface synergetic oxygen vacancy[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2011, 17(20): 5668-5679.
|
24 |
陈帅帅, 陈鑫超, 凌晨, 等. 沉淀过程对锰孔雀石结构及其演化过程的影响[J]. 化工进展, 2020, 39(5): 1707-1713.
|
|
Chen S S, Chen X C, Ling C, et al. Influence of the precipitation process on the structure and evolution of manganese malachite[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1707-1713.
|
25 |
Chen S H, Li H, Hao Y, et al. Porous Mn-based oxides for complete ethanol and toluene catalytic oxidation: the relationship between structure and performance[J]. Catalysis Science & Technology, 2020, 10(6): 1941-1951.
|
26 |
Wang Y, Yang D Y, Li S Z, et al. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation[J]. Chemical Engineering Journal, 2019, 357: 258-268.
|
27 |
Wang P, He Y, Yang Z Q, et al. Experimental study of benzene catalytic combustion over Cu-Mn-Ce/Al2O3 particles[J]. ChemistrySelect, 2020, 5(3): 1122-1129.
|
28 |
Lee H J, Yang J H, You J H, et al. Sea-urchin-like mesoporous copper-manganese oxide catalysts: influence of copper on benzene oxidation[J]. Journal of Industrial and Engineering Chemistry, 2020, 89: 156-165.
|
29 |
Cao H Y, Li X S, Chen Y Q, et al. Effect of loading content of copper oxides on performance of Mn-Cu mixed oxide catalysts for catalytic combustion of benzene[J]. Journal of Rare Earths, 2012, 30(9): 871-877.
|
30 |
Liu Y X, Dai H X, Deng J G, et al. In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnO x /3DOM LaMnO3 for the combustion of toluene and methanol[J]. Applied Catalysis B: Environmental, 2013, 140/141: 493-505.
|