化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5240-5250.DOI: 10.11949/0438-1157.20220906
宋谦石1(), 王潇伟1,3, 张威1,4, 汪小憨1(), 李浩文1, 乔瑜2
收稿日期:
2022-06-28
修回日期:
2022-09-26
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
汪小憨
作者简介:
宋谦石(1994—),男,博士,助理研究员,songqs@ms.giec.ac.cn
基金资助:
Qianshi SONG1(), Xiaowei WANG1,3, Wei ZHANG1,4, Xiaohan WANG1(), Haowen LI1, Yu QIAO2
Received:
2022-06-28
Revised:
2022-09-26
Online:
2022-11-05
Published:
2022-12-06
Contact:
Xiaohan WANG
摘要:
基于简单碰撞理论,建立了含有无机元素影响的焦炭气化反应动力学模型。建模过程中,考虑了七种无机元素含量、催化/抑制能力以及单一无机元素饱和催化倍率对焦炭反应性的影响。实验部分,选取四种生物质样品置于微型流化床反应器中测试了焦炭反应性,并与模型计算值进行了对比,结果表明模型能够较好预测焦炭反应性,同时表现出对不同样品的适应性。该模型能够通过输入样品特性参数和反应工况条件实现焦炭反应性的定量预测。该模型的建立表明固体燃料通用气化反应的规律是存在的,可以为进一步阐明气化反应规律提供理论参考。
中图分类号:
宋谦石, 王潇伟, 张威, 汪小憨, 李浩文, 乔瑜. 无机元素对生物质焦炭-CO2气化反应性的催化/抑制作用研究及模型构建[J]. 化工学报, 2022, 73(11): 5240-5250.
Qianshi SONG, Xiaowei WANG, Wei ZHANG, Xiaohan WANG, Haowen LI, Yu QIAO. Catalytic/inhibitory effects of inorganic elements on biomass char-CO2 gasification reactivity and model construction[J]. CIESC Journal, 2022, 73(11): 5240-5250.
样品名称 | 工业分析 /% (质量,干燥基) | 元素分析 /% (质量,干燥基) | Mv / (g/mol) | ||||||
---|---|---|---|---|---|---|---|---|---|
V | FC | A | C | H | N | S | O① | ||
烟杆 | 79.65 | 13.19 | 7.16 | 44.90 | 5.98 | 1.70 | 0.01 | 40.25 | 72.43 |
玉米芯 | 85.77 | 12.72 | 1.51 | 44.18 | 6.11 | 0.10 | 0.03 | 48.07 | 80.93 |
杉木 | 88.43 | 11.49 | 0.08 | 49.40 | 6.17 | 0.01 | 0.01 | 44.33 | 92.35 |
核桃皮 | 82.17 | 16.38 | 1.45 | 48.01 | 6.14 | 0.37 | 0.02 | 44.01 | 60.21 |
表1 生物质样品的工业分析和元素分析
Table 1 Proximate analysis and ultimate analysis of samples
样品名称 | 工业分析 /% (质量,干燥基) | 元素分析 /% (质量,干燥基) | Mv / (g/mol) | ||||||
---|---|---|---|---|---|---|---|---|---|
V | FC | A | C | H | N | S | O① | ||
烟杆 | 79.65 | 13.19 | 7.16 | 44.90 | 5.98 | 1.70 | 0.01 | 40.25 | 72.43 |
玉米芯 | 85.77 | 12.72 | 1.51 | 44.18 | 6.11 | 0.10 | 0.03 | 48.07 | 80.93 |
杉木 | 88.43 | 11.49 | 0.08 | 49.40 | 6.17 | 0.01 | 0.01 | 44.33 | 92.35 |
核桃皮 | 82.17 | 16.38 | 1.45 | 48.01 | 6.14 | 0.37 | 0.02 | 44.01 | 60.21 |
生物质样品 | Nion,K/(mg/kg) | Nion,Na/(mg/kg) | Nion,Ca/(mg/kg) | Nion,Mg/(mg/kg) | Nion,Fe/(mg/kg) | Si/(mg/kg) | Al/(mg/kg) |
---|---|---|---|---|---|---|---|
烟杆 | 309 | 53 | 9717 | 822 | 891 | 7046 | 3254 |
玉米芯 | 434 | 110 | 94 | 159 | 18 | 6136 | 2965 |
杉木 | 103 | 104 | 151 | 121 | 132 | 5465 | 2979 |
核桃皮 | 400 | 5 | 120 | 53 | 323 | 6539 | 2945 |
表2 生物质样品中Si元素和Al元素以及离子态K、Na、Ca、Mg、Fe元素的含量
Table 2 Contents of Si and Al elements and ion-exchanged K, Na, Ca, Mg, Fe elements in biomass samples
生物质样品 | Nion,K/(mg/kg) | Nion,Na/(mg/kg) | Nion,Ca/(mg/kg) | Nion,Mg/(mg/kg) | Nion,Fe/(mg/kg) | Si/(mg/kg) | Al/(mg/kg) |
---|---|---|---|---|---|---|---|
烟杆 | 309 | 53 | 9717 | 822 | 891 | 7046 | 3254 |
玉米芯 | 434 | 110 | 94 | 159 | 18 | 6136 | 2965 |
杉木 | 103 | 104 | 151 | 121 | 132 | 5465 | 2979 |
核桃皮 | 400 | 5 | 120 | 53 | 323 | 6539 | 2945 |
无机元素 | 拟合线斜率 | 催化指数αi,* | 抑制指数αj,* |
---|---|---|---|
K | 0.611 | 1.000 | — |
Na | 0.519 | 0.849 | — |
Ca | 0.752 | 1.231 | — |
Mg | 0.125 | 0.205 | — |
Fe | 0.373 | 0.610 | — |
Si | -0.451 | — | 0.738 |
Al | -0.379 | — | 0.620 |
表3 无机元素催化/抑制指数计算结果
Table 3 Calculation results of catalysis/inhibition factor of inorganic elements
无机元素 | 拟合线斜率 | 催化指数αi,* | 抑制指数αj,* |
---|---|---|---|
K | 0.611 | 1.000 | — |
Na | 0.519 | 0.849 | — |
Ca | 0.752 | 1.231 | — |
Mg | 0.125 | 0.205 | — |
Fe | 0.373 | 0.610 | — |
Si | -0.451 | — | 0.738 |
Al | -0.379 | — | 0.620 |
生物质样品 | Rc0×103/min-1 | |||
---|---|---|---|---|
873 K | 923 K | 973 K | 1023 K | |
烟杆焦炭 | 9.33 | 26.77 | 68.67 | 113.00 |
玉米芯焦炭 | 4.05 | 15.17 | 35.52 | 48.32 |
杉木焦炭 | 0.28 | 0.73 | 1.80 | 5.44 |
核桃皮焦炭 | 1.45 | 7.60 | 18.11 | 35.90 |
表4 生物质焦炭的初始反应速率
Table 4 Initial gasification rate of char from four biomass samples
生物质样品 | Rc0×103/min-1 | |||
---|---|---|---|---|
873 K | 923 K | 973 K | 1023 K | |
烟杆焦炭 | 9.33 | 26.77 | 68.67 | 113.00 |
玉米芯焦炭 | 4.05 | 15.17 | 35.52 | 48.32 |
杉木焦炭 | 0.28 | 0.73 | 1.80 | 5.44 |
核桃皮焦炭 | 1.45 | 7.60 | 18.11 | 35.90 |
1 | 董存珍, 汪小憨, 曾小军, 等. CO2气氛下生物焦气化反应动力学参数的实验研究 (Ⅰ):活化能[J]. 燃料化学学报, 2014, 42(3): 329-335. |
Dong C Z, Wang X H, Zeng X J, et al. Experimental study on the gasification kinetic parameters of biomass chars under CO2 atmospher (Ⅰ): Activation energy[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 329-335. | |
2 | 范洪刚, 赵丹丹, 顾菁, 等. 生物质三组分二元混合热解特性研究[J]. 化工学报, 2021, 72(7): 3788-3800. |
Fan H G, Zhao D D, Gu J, et al. Study on the pyrolysis characteristics of binary mixture of biomass three-component[J]. CIESC Journal, 2021, 72(7): 3788-3800. | |
3 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
4 | 邵振华, 汪小憨, 曾小军, 等. 基于简单碰撞理论的生物质焦炭气化反应的活化能[J]. 过程工程学报, 2015, 15(4): 599-606. |
Shao Z H, Wang X H, Zeng X J, et al. Gasification activation energy of biomass chars based on simple collision theory[J]. The Chinese Journal of Process Engineering, 2015, 15(4): 599-606. | |
5 | Song Q S, Wang X H, Li H W, et al. Comprehensive study on the influence of preparation conditions on the physicochemical structure of char and the adaptability of the char reactivity model[J]. Chemical Engineering Journal, 2022, 431: 133903. |
6 | 戴贡鑫, 王冠宇, 王凯歌, 等. 2, 6-二甲氧基苯酚热解机理研究[J]. 燃烧科学与技术, 2020, 26(6): 501-506. |
Dai G X, Wang G Y, Wang K G, et al. Mechanism study of 2, 6-dimethoxyphenol pyrolysis[J]. Journal of Combustion Science and Technology, 2020, 26(6): 501-506. | |
7 | Zhao D, Liu H, Sun C L, et al. DFT study of the catalytic effect of Na on the gasification of carbon: CO2 [J]. Combustion and Flame, 2018, 197: 471-486. |
8 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
9 | Gao M J, Li X X, Guo X, et al. Dynamic migration mechanism of organic oxygen in Fugu coal pyrolysis by large-scale ReaxFF molecular dynamics[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105109. |
10 | Fletcher T H. Review of 30 years of research using the chemical percolation devolatilization model[J]. Energy & Fuels, 2019, 33(12): 12123-12153. |
11 | Yang H, Pisupati S V, Hu H Q. Modeling char surface area evolution during coal pyrolysis: effect of swelling and gasification at high pressures[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4151-4159. |
12 | Lahijani P, Zainal Z A, Mohamed A R, et al. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts[J]. Bioresource Technology, 2013, 144: 288-295. |
13 | Dahou T, Defoort F, Khiari B, et al. Role of inorganics on the biomass char gasification reactivity: a review involving reaction mechanisms and kinetics models[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110136. |
14 | Huang Y Q, Yin X L, Wu C Z, et al. Effects of metal catalysts on CO2 gasification reactivity of biomass char[J]. Biotechnology Advances, 2009, 27(5): 568-572. |
15 | Wang X H, Song Q S, Wang N, et al. Theoretical modelling of the chemical reactivity of fresh biomass chars under non-catalytic conditions[J]. Bioresource Technology, 2019, 273: 244-250. |
16 | Song Q S, Wang X H, Gu C H, et al. A comprehensive model of biomass char-CO2 gasification reactivity with inorganic element catalysis in the kinetic control zone based on TGA analysis[J]. Chemical Engineering Journal, 2020, 398: 125624. |
17 | 冯冬冬, 赵义军, 张宇, 等. AAEM赋存形态对生物质半焦反应活性的影响[J]. 哈尔滨工业大学学报, 2017, 49(7): 69-73. |
Feng D D, Zhao Y J, Zhang Y, et al. Effect of speciation of AAEM species on reactivity of biochar[J]. Journal of Harbin Institute of Technology, 2017, 49(7): 69-73. | |
18 | Yip K, Tian F J, Hayashi J I, et al. Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification[J]. Energy & Fuels, 2010, 24(1): 173-181. |
19 | Li C Z, Sathe C, Kershaw J R, et al. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(3/4): 427-438. |
20 | Jiang L, Hu S, Sun L S, et al. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass[J]. Bioresource Technology, 2013, 146: 254-260. |
21 | Yeboah Y D, Xu Y, Sheth A, et al. Catalytic gasification of coal using eutectic salts: identification of eutectics[J]. Carbon, 2003, 41(2): 203-214. |
22 | Matsukata M, Fujikawa T, Kikuchi E, et al. Auger electron spectroscopy and electron probe microanalysis observations of barium and calcium loaded on amorphous carbon under gasification conditions[J]. Energy & Fuels, 1990, 4(4): 365-371. |
23 | Popa T, Fan M H, Argyle M D, et al. Catalytic gasification of a powder river basin coal[J]. Fuel, 2013, 103: 161-170. |
24 | McKee D W, Spiro C L, Kosky P G, et al. Eutectic salt catalysts for graphite and coal char gasification[J]. Fuel, 1985, 64(6): 805-809. |
25 | Onay O. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor[J]. Fuel Processing Technology, 2007, 88(5): 523-531. |
26 | Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis[J]. Progress in Energy and Combustion Science, 2008, 34(1): 47-90. |
27 | Song Q S, Wang X H, Gu C H, et al. Study on CO2 gasification kinetics of biomass char based on pore structure analysis: theoretical modelling of structural parameter ψ in random pore model[J]. International Journal of Energy Research, 2021, 45(3): 4429-4442. |
28 | 汪小憨, 宋谦石, 曾小军, 等. CO2气氛下生物质焦气化反应动力学模型研究 (Ⅱ): 指数前因子[J]. 燃料化学学报, 2017, 45(5): 529-536. |
Wang X H, Song Q S, Zeng X J, et al. Modeling study on the biomass char gasification kinetics under CO2 atmosphere (Ⅱ): Pre-exponential factor[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 529-536. | |
29 | Zhang L X, Kudo S, Tsubouchi N, et al. Catalytic effects of Na and Ca from inexpensive materials on in situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor[J]. Fuel Processing Technology, 2013, 113: 1-7. |
30 | Bai B Y, Guo Q J, Li Y K, et al. Catalytic gasification of crushed coke and changes of structural characteristics[J]. Energy & Fuels, 2018, 32(3): 3356-3367. |
31 | Dupont C, Nocquet T, da Costa J A, et al. Kinetic modelling of steam gasification of various woody biomass chars: influence of inorganic elements[J]. Bioresource Technology, 2011, 102(20): 9743-9748. |
32 | Dupont C, Jacob S, Marrakchy K O, et al. How inorganic elements of biomass influence char steam gasification kinetics[J]. Energy, 2016, 109: 430-435. |
33 | North L, Blackmore K, Nesbitt K, et al. Models of coke quality prediction and the relationships to input variables: a review[J]. Fuel, 2018, 219: 446-466. |
34 | 郑明东, 徐静静, 单海燕. 基于催化作用程度的焦炭灰组成催化指数模型研究[J]. 钢铁, 2009, 44(10): 17-20. |
Zheng M D, Xu J J, Shan H Y. Modeling research of mineral catalysis index for coke reactivity upon the degree of catalysis[J]. Iron & Steel, 2009, 44(10): 17-20. | |
35 | 杨俊和, 冯安祖, 杜鹤桂. 矿物质催化指数与焦炭反应性关系[J]. 钢铁, 2001, 36(6): 5-9. |
Yang J H, Feng A Z, Du H G. Relation between mineral catalytic index (MCI) and reactivity of coke[J]. Iron and Steel, 2001, 36(6): 5-9. | |
36 | Aris R. On shape factors for irregular particles (Ⅰ): The steady state problem. Diffusion and reaction[J]. Chemical Engineering Science, 1957, 6(6): 262-268. |
37 | Thiele E W. Relation between catalytic activity and size of particle[J]. Industrial & Engineering Chemistry, 1939, 31(7): 916-920. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[7] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[10] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[14] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[15] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||