化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5504-5516.DOI: 10.11949/0438-1157.20221209
收稿日期:
2022-09-04
修回日期:
2022-11-05
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
张建文
作者简介:
苏国庆(1994—),男,博士研究生,1556544322@qq.com
基金资助:
Guoqing SU(), Jianwen ZHANG(
), Yan LI
Received:
2022-09-04
Revised:
2022-11-05
Online:
2022-12-05
Published:
2023-01-17
Contact:
Jianwen ZHANG
摘要:
针对某石化厂蝶阀后管线异常减薄的问题,结合腐蚀分析、腐蚀实验和数值模拟,分析了管线异常减薄的原因,研究了腐蚀的发生与发展机制。样品的结构及成分通过扫描电镜(SEM)、X射线衍射(XRD)和能谱仪(EDS)及金相显微镜进行表征,并结合计算流体动力学(CFD)分析了流场参数对腐蚀过程的影响。结果表明,管线主要的失效原因是流动加速腐蚀。此外,基于速度边界层与壁面粗糙度之间的关系,将蝶阀后管线划分为三个不同的区域,并用示意图对不同区域腐蚀的发生与发展机制进行了解释。
中图分类号:
苏国庆, 张建文, 李彦. 蝶阀后管线腐蚀发生与发展机制研究[J]. 化工学报, 2022, 73(12): 5504-5516.
Guoqing SU, Jianwen ZHANG, Yan LI. Study on the occurrence and development mechanism of pipeline corrosion behind butterfly valve[J]. CIESC Journal, 2022, 73(12): 5504-5516.
组成 | 含量/%(mass) |
---|---|
H2O | 18 |
C3 | 0.06 |
C4 | 0.31 |
C5 | 1.25 |
C6 | 6.85 |
C7 | 15.05 |
C8 | 25.34 |
C9 | 24.23 |
C10 | 8.23 |
C11 | 0.64 |
H2S | 0.0272 |
Cl- | 0.006 |
Table 2 Composition of conveying medium
组成 | 含量/%(mass) |
---|---|
H2O | 18 |
C3 | 0.06 |
C4 | 0.31 |
C5 | 1.25 |
C6 | 6.85 |
C7 | 15.05 |
C8 | 25.34 |
C9 | 24.23 |
C10 | 8.23 |
C11 | 0.64 |
H2S | 0.0272 |
Cl- | 0.006 |
元素 | 含量/%(mass) |
---|---|
C | 0.03 |
Mn | 1.22 |
P | 0.02 |
S | 0.02 |
Si | 0.31 |
Cr | 18.90 |
Ni | 9.10 |
Fe | 70.4 |
表3 304不锈钢试样化学成分
Table 3 Chemical composition of 304 stainless steel coupons
元素 | 含量/%(mass) |
---|---|
C | 0.03 |
Mn | 1.22 |
P | 0.02 |
S | 0.02 |
Si | 0.31 |
Cr | 18.90 |
Ni | 9.10 |
Fe | 70.4 |
参数 | 数值 |
---|---|
入口流速/(m/s) | 1.5 |
介质密度/(kg/m3) | 790 |
介质黏度/cP | 0.43 |
压力/MPa | 0.15 |
表4 模拟的边界条件
Table 4 Simulated boundary conditions
参数 | 数值 |
---|---|
入口流速/(m/s) | 1.5 |
介质密度/(kg/m3) | 790 |
介质黏度/cP | 0.43 |
压力/MPa | 0.15 |
e/mm | 流动类型 |
---|---|
0≤e≤0.08 | 水力光滑管 |
0.08<e<0.85 | 过渡区圆管 |
e≥0.85 | 完全粗糙管 |
表5 不同粗糙度下的流动类型
Table 5 Flow types at different roughness
e/mm | 流动类型 |
---|---|
0≤e≤0.08 | 水力光滑管 |
0.08<e<0.85 | 过渡区圆管 |
e≥0.85 | 完全粗糙管 |
1 | 韦彦强, 何世权. 三偏心蝶阀的结构优化及流场分析[J]. 液压与气动, 2021, 45(12): 162-167. |
Wei Y Q, He S Q. Structural optimization and flow field analysis of triple-eccentric butterfly valve[J]. Chinese Hydraulics & Pneumatics, 2021, 45(12): 162-167. | |
2 | 何庆中, 刘玉聪, 赵献丹, 等. 基于CFD动网格技术的三偏心蝶阀开启特性[J]. 排灌机械工程学报, 2019, 37(6): 508-512. |
He Q Z, Liu Y C, Zhao X D, et al. Opening characteristics of triple eccentric butterfly valve based on CFD moving grid technology[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(6): 508-512. | |
3 | Toro A D, Johnson M C, Spall R E. Computational fluid dynamics investigation of butterfly valve performance factors[J]. Journal - American Water Works Association, 2015, 107(5): E243-E254. |
4 | 张松, 但志宏, 李腾, 等. 大口径蝶阀数学建模与流场特性分析[J]. 航空动力学报, 2020, 35(6): 1315-1325. |
Zhang S, Dan Z H, Li T, et al. Modeling and flow field analysis of large-diameter butterfly valve[J]. Journal of Aerospace Power, 2020, 35(6): 1315-1325. | |
5 | Lee M G, Lim C S, Han S H. Shape design of the bottom plug used in a 3-way reversing valve to minimize the cavitation effect[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(3): 401-406. |
6 | Song X G, Wang L, Baek S H, et al. Multidisciplinary optimization of a butterfly valve[J]. ISA Transactions, 2009, 48(3): 370-377. |
7 | Kodura A. An analysis of the impact of valve closure time on the course of water hammer[J]. Archives of Hydro-Engineering and Environmental Mechanics, 2016, 63(1): 35-45. |
8 | Wang H M, Hu F, Kong X S, et al. Pressure fluctuation of steam on the disc in a triple eccentric butterfly valve[J]. SN Applied Sciences, 2020, 2(7): 1-10. |
9 | 诸葛伟林, 刘光临, 蒋劲, 等. 蝶阀三维分离流动的数值模拟研究[J]. 流体机械, 2003, 31(6): 14-16. |
Zhuge W L, Liu G L, Jiang J, et al. Numerical investigation on 3-D separate flow of butterfly valve[J]. Fluid Machinery, 2003, 31(6): 14-16. | |
10 | Kan B, Chen L J. Numerical analysis of flow field in link rod butterfly valve for high-temperature steam[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(4): 1-11. |
11 | Hosseini R K, Yareiee S. Failure analysis of a nickel aluminium bronze butterfly valve in a seawater line[J]. Engineering Failure Analysis, 2021, 129: 105686. |
12 | 谢金宏. 双偏心蝶阀开裂失效分析[J]. 金属热处理, 2019, 44(S1): 60-63. |
Xie J H. Failure analysis of the valve plate and valve body[J]. Heat Treatment of Metals, 2019, 44(S1): 60-63. | |
13 | Liu B, Zhao J G, Qian J H. Numerical analysis of cavitation erosion and particle erosion in butterfly valve[J]. Engineering Failure Analysis, 2017, 80: 312-324. |
14 | 李杰, 高嘉喜, 崔铭伟, 等. 腐蚀对管输CO2压力损失影响分析[J]. 表面技术, 2016, 45(8): 45-49. |
Li J, Gao J X, Cui M W, et al. Effect of corrosion on pressure loss of CO2 pipeline[J]. Surface Technology, 2016, 45(8): 45-49. | |
15 | Hamada E, Yamada K, Nagoshi M, et al. Direct imaging of native passive film on stainless steel by aberration corrected STEM[J]. Corrosion Science, 2010, 52(12): 3851-3854. |
16 | Gui Y, Zheng Z J, Gao Y. The bi-layer structure and the higher compactness of a passive film on nanocrystalline 304 stainless steel[J]. Thin Solid Films, 2016, 599: 64-71. |
17 | Jiang R J, Wang Y W, Wen X, et al. Effect of time on the characteristics of passive film formed on stainless steel[J]. Applied Surface Science, 2017, 412: 214-222. |
18 | Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy[J]. Corrosion Science, 2010, 52(11): 3646-3653. |
19 | Davoodi A, Pakshir M, Babaiee M, et al. A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media[J]. Corrosion Science, 2011, 53(1): 399-408. |
20 | Ding J H, Zhang L, Lu M X, et al. The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures[J]. Applied Surface Science, 2014, 289: 33-41. |
21 | Bai P P, Zhao H, Zheng S Q, et al. Initiation and developmental stages of steel corrosion in wet H2S environments[J]. Corrosion Science, 2015, 93: 109-119. |
22 | 潘佩媛, 陈衡, 焦健, 等. 湿法脱硫后烟气腐蚀现场实验研究[J]. 化工学报, 2019, 70(1): 161-169. |
Pan P Y, Chen H, Jiao J, et al. In-plant experimental study on desulfurized flue gas corrosion[J]. CIESC Journal, 2019, 70(1): 161-169. | |
23 | 李自力, 程远鹏, 毕海胜, 等. 油气田CO2/H2S共存腐蚀与缓蚀技术研究进展[J]. 化工学报, 2014, 65(2): 406-414. |
Li Z L, Cheng Y P, Bi H S, et al. Research progress of CO2/H2S corrosion and inhibitor techniques in oil and gas fields[J]. CIESC Journal, 2014, 65(2): 406-414. | |
24 | 张建文, 苏国庆, 姜爱国. 液化气脱硫装置再生塔返塔管线弯头腐蚀失效机制分析[J]. 化工学报, 2018, 69(8): 3537-3547. |
Zhang J W, Su G Q, Jiang A G. Corrosion failure mechanism of return pipeline elbow of regeneration tower in LPG desulfurization unit[J]. CIESC Journal, 2018, 69(8): 3537-3547. | |
25 | Fierro G, Ingo G M, Mancia F. XPS investigation on the corrosion behavior of 13Cr- martensitic stainless steel in CO2-H2S-Cl- environment[J]. Corrosion, 1989, 45(10): 814-823. |
26 | Barmatov E, Hughe T, Nagl M. Efficiency of film-forming corrosion inhibitors in strong hydrochloric acid under laminar and turbulent flow conditions[J]. Corrosion Science, 2015, 92: 85-94. |
27 | 谭卓伟, 杨留洋, 王振波, 等. 高剪切力流场下X80管线钢局部腐蚀深坑诱导局部湍流交互机理研究[J]. 化工学报, 2021, 72(4): 2203-2212. |
Tan Z W, Yang L Y, Wang Z B, et al. Study on interaction mechanism of local turbulent flow induced by local corrosion of X80 pipeline steel in high shear flow field[J]. CIESC Journal, 2021, 72(4): 2203-2212. | |
28 | 张凌翔, 周克毅, 徐奇, 等. 90°弯管流动加速腐蚀的实验和数值模拟[J]. 化工学报, 2018, 69(12): 5173-5181. |
Zhang L X, Zhou K Y, Xu Q, et al. Experiment and numerical simulation of flow-accelerated corrosion of 90° elbow[J]. CIESC Journal, 2018, 69(12): 5173-5181. | |
29 | Xu Y Z, Tan M Y. Probing the initiation and propagation processes of flow accelerated corrosion and erosion corrosion under simulated turbulent flow conditions[J]. Corrosion Science, 2019, 151: 163-174. |
30 | 何昌春, 徐磊, 陈伟, 等. 常顶系统流动腐蚀机理预测及防控措施优化[J]. 化工学报, 2019, 70(3): 1027-1034. |
He C C, Xu L, Chen W, et al. Mechanism prediction of flow-induced corrosion and optimization of protection measures in overhead system of atmospheric tower[J]. CIESC Journal, 2019, 70(3): 1027-1034. | |
31 | 陈涛, 张国亮. 化工传递过程基础[M]. 3版. 北京: 化学工业出版社, 2009: 111-113. |
Chen T, Zhang G L. Chemical Engineering Transfer Processes[M]. 3rd ed. Beijing: Chemical Industry Press, 2009: 111-113. | |
32 | 彭文山, 刘雪键, 刘少通, 等. 含砂流动海水中Q235钢冲刷腐蚀行为研究[J]. 表面技术, 2019, 48(9): 230-237. |
Peng W S, Liu X J, Liu S T, et al. Erosion-corrosion behavior of Q235 steel in flowing seawater containing sand particles[J]. Surface Technology, 2019, 48(9): 230-237. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[7] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[8] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[9] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[10] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[13] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[14] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[15] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 573
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 264
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||