化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1313-1321.DOI: 10.11949/0438-1157.20221242
胡晗1,2(), 杨亮1,2(), 李春晓1,2, 刘道平1,2
收稿日期:
2022-09-14
修回日期:
2023-01-06
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
杨亮
作者简介:
胡晗(1996—),男,硕士研究生,huhanusst@163.com
基金资助:
Han HU1,2(), Liang YANG1,2(), Chunxiao LI1,2, Daoping LIU1,2
Received:
2022-09-14
Revised:
2023-01-06
Online:
2023-03-05
Published:
2023-04-19
Contact:
Liang YANG
摘要:
水合物法储存天然气被公认为是一种极具潜力的高效储气技术。如何加速水合物生成,又能保证水合促进材料绿色环保,是水合固气技术实用化的关键。本文利用天然烟丝和烟末浸泡滤液在8.0 MPa和274.2 K的实验条件下进行静态水合储甲烷实验,研究甲烷水合物在烟滤液中的生成动力学特性。实验结果表明,水-烟质量比(液固比)为5~100的滤液与表面活性剂溶液性质相似,其表面张力比纯水下降36.7%~47.5%,甲烷水合物在该天然活性溶液中能快速生成。烟丝滤液中活性物含量明显低于烟末滤液,低液固比时,烟丝溶液有更高的水合储气量和储气速率;高液固比时,烟末滤液则表现出更优的水合储气性能,尤其在液固比为50时,烟末滤液中水合物储气量高达118.5 mmol·mol-1,储气速率达2.98 mmol·mol-1·min-1。
中图分类号:
胡晗, 杨亮, 李春晓, 刘道平. 天然烟浸滤液水合物法储甲烷动力学研究[J]. 化工学报, 2023, 74(3): 1313-1321.
Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form[J]. CIESC Journal, 2023, 74(3): 1313-1321.
Hydrate system | RL/S | Cup, max/ (mmol·mol-1) | Rup, max/ (mmol·mol-1·min-1) | tin/min |
---|---|---|---|---|
TS solution | 5 | 71.7 (±2.3) | 1.16 | 570 |
10 | 83.4 (±3.0) | 1.56 | 5 | |
20 | — | — | — | |
34 | — | — | — | |
50 | — | — | — | |
100 | — | — | — | |
TG solution | 5 | 21.1 (±6.1) | — | — |
10 | 71.9 (±1.9) | 1.35 | 20 | |
20 | 85.3 (±2.5) | 2.13 | 50 | |
34 | 80.4 (±4.2) | 1.57 | 70 | |
50 | 118.5 (±1.9) | 2.98 | 120 | |
100 | — | — | — | |
deionized water | — | — | — | — |
表1 水合储气实验结果
Table 1 Experimental results of hydration gas storage
Hydrate system | RL/S | Cup, max/ (mmol·mol-1) | Rup, max/ (mmol·mol-1·min-1) | tin/min |
---|---|---|---|---|
TS solution | 5 | 71.7 (±2.3) | 1.16 | 570 |
10 | 83.4 (±3.0) | 1.56 | 5 | |
20 | — | — | — | |
34 | — | — | — | |
50 | — | — | — | |
100 | — | — | — | |
TG solution | 5 | 21.1 (±6.1) | — | — |
10 | 71.9 (±1.9) | 1.35 | 20 | |
20 | 85.3 (±2.5) | 2.13 | 50 | |
34 | 80.4 (±4.2) | 1.57 | 70 | |
50 | 118.5 (±1.9) | 2.98 | 120 | |
100 | — | — | — | |
deionized water | — | — | — | — |
Hydrate system | RL/S | CAS/%(mass) | IFT/(mN·m-1) |
---|---|---|---|
TS solution | 5 | 3.79 (±0.26) | 42.08 (±0.056) |
10 | 1.34 (±0.09) | 43.23 (±0.042) | |
20 | 0.50 (±0.06) | 44.73 (±0.053) | |
TG solution | 5 | 7.47 (±0.38) | 38.19 (±0.077) |
10 | 4.09 (±0.26) | 42.17 (±0.074) | |
20 | 2.23 (±0.10) | 42.59 (±0.045) | |
34 | 1.22 (±0.09) | 43.58 (±0.075) | |
50 | 0.80 (±0.08) | 44.20 (±0.090) | |
100 | 0.27 (±0.04) | 46.08 (±0.063) | |
200 | 0.12 (±0.01) | 43.21 (±0.075) | |
deionized water | — | 0 | 72.75 |
表2 不同液固比条件下烟溶液中溶解物浓度及界面张力
Table 2 Dissolved substance concentration and interfacial tension in tobacco solution under different liquid-solid ratios
Hydrate system | RL/S | CAS/%(mass) | IFT/(mN·m-1) |
---|---|---|---|
TS solution | 5 | 3.79 (±0.26) | 42.08 (±0.056) |
10 | 1.34 (±0.09) | 43.23 (±0.042) | |
20 | 0.50 (±0.06) | 44.73 (±0.053) | |
TG solution | 5 | 7.47 (±0.38) | 38.19 (±0.077) |
10 | 4.09 (±0.26) | 42.17 (±0.074) | |
20 | 2.23 (±0.10) | 42.59 (±0.045) | |
34 | 1.22 (±0.09) | 43.58 (±0.075) | |
50 | 0.80 (±0.08) | 44.20 (±0.090) | |
100 | 0.27 (±0.04) | 46.08 (±0.063) | |
200 | 0.12 (±0.01) | 43.21 (±0.075) | |
deionized water | — | 0 | 72.75 |
1 | Sloan E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359. |
2 | Hao W F, Wang J H, Fan S S, et al. Evaluation and analysis method for natural gas hydrate storage and transportation processes[J]. Energy Conversion and Management, 2008, 49(10): 2546-2553. |
3 | Kumar R, Linga P, Moudrakovski I, et al. Structure and kinetics of gas hydrates from methane/ethane/propane mixtures relevant to the design of natural gas hydrate storage and transport facilities[J]. AIChE Journal, 2008, 54(8): 2132-2144. |
4 | Yang L, Fan S S, Wang Y H, et al. Accelerated formation of methane hydrate in aluminum foam[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11563-11569. |
5 | Xiao P, Yang X M, Sun C Y, et al. Enhancing methane hydrate formation in bulk water using vertical reciprocating impact[J]. Chemical Engineering Journal, 2018, 336: 649-658. |
6 | Yang M J, Chong Z R, Zheng J N, et al. Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1346-1360. |
7 | Zhao J, Zheng J N, Ma S, et al. Formation and production characteristics of methane hydrates from marine sediments in a core holder[J]. Applied Energy, 2020, 275: 115393. |
8 | Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. |
9 | Englezos P, Kalogerakis N, Dholabhai P D, et al. Kinetics of formation of methane and ethane gas hydrates[J]. Chemical Engineering Science, 1987, 42(11): 2647-2658. |
10 | Hao W F, Wang J Q, Fan S S, et al. Study on methane hydration process in a semi-continuous stirred tank reactor[J]. Energy Conversion and Management, 2007, 48(3): 954-960. |
11 | Yao S P, Li Y X, Wang W C, et al. Experimental investigation on the microscopic decomposition process of natural gas hydrate particles[J]. Energy & Fuels, 2019, 33(6): 5208-5215. |
12 | Zhao J F, Wang B, Sum A K. Dynamics of hydrate formation and deposition under pseudo multiphase flow[J]. AIChE Journal, 2017, 63(9): 4136-4146. |
13 | Mali G A, Chapoy A, Tohidi B. Investigation into the effect of subcooling on the kinetics of hydrate formation[J]. The Journal of Chemical Thermodynamics, 2018, 117: 91-96. |
14 | Maini B B, Bishoni P R. Experimental investigation of hydrate formation behaviour of a natural gas bubble in a simulated deep sea environment[J]. Chemical Engineering Science, 1981, 36(1): 183-189. |
15 | Fu W Q, Wang Z Y, Sun B J, et al. A mass transfer model for hydrate formation in bubbly flow considering bubble-bubble interactions and bubble-hydrate particle interactions[J]. International Journal of Heat and Mass Transfer, 2018, 127: 611-621. |
16 | Tsuji H, Ohmura R, Mori Y H. Forming structure-H hydrates using water spraying in methane gas: effects of chemical species of large-molecule guest substances[J]. Energy & Fuels, 2004, 18(2): 418-424. |
17 | Zhong Y, Rogers R E. Surfactant effects on gas hydrate formation[J]. Chemical Engineering Science, 2000, 55(19): 4175-4187. |
18 | Ganji H, Manteghian M, Mofrad H R. Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity[J]. Fuel Processing Technology, 2007, 88(9): 891-895. |
19 | Zhang J S, Lee S Y, Lee J W. Kinetics of methane hydrate formation from SDS solution[J]. Industrial and Engineering Chemistry Research, 2007, 46(19): 6353-6359. |
20 | Yoslim J, Linga P, Englezos P. Enhanced growth of methane-propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants[J]. Journal of Crystal Growth, 2010, 313(1): 68-80. |
21 | Duan M, Ding Z, Wang H, et al. Evolution of oil/water interface in the presence of SDBS detected by dual polarization interferometry[J]. Applied Surface Science, 2018, 427: 917-926. |
22 | Zhang C S, Fan S S, Liang D Q, et al. Effect of additives on formation of natural gas hydrate[J]. Fuel, 2004, 83(16): 2115-2121. |
23 | Zhou L C, Sun Z G, Lu L, et al. Effect of organic phase change material and surfactant on HCFC141b hydrate nucleation in quiescent conditions[J]. Chemical Engineering Science, 2020, 228: 115976. |
24 | Wang W X, Zeng P Y, Long X Y, et al. Methane storage in tea clathrates[J]. Chemical Communications, 2014, 50(10): 1244-1246. |
25 | Babakhani S M, Alamdari A. Effect of maize starch on methane hydrate formation/dissociation rates and stability[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1-5. |
26 | Sun Q, Chen B, Li Y Y, et al. Promotion effects of mung starch on methane hydrate formation equilibria/rate and gas storage capacity[J]. Fluid Phase Equilibria, 2018, 475: 95-99. |
27 | Ekta C, Nitish P, Ajay M. Enhanced formation of methane hydrate using a novel synthesized anionic surfactant for application in storage and transportation of natural gas[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 246-257. |
28 | Yi J, Zhong D L, Yan J, et al. Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture[J]. Energy, 2019, 171: 61-68. |
29 | 黄仙智, 马贵阳, 王平. 鼠李糖脂与多孔介质对天然气水合物生成影响[J]. 天然气化工(C1化学与化工), 2020, 45(6): 42-47. |
Huang X Z, Ma G Y, Wang P. Effects of rhamnolipid and porous media on natural gas hydrate formation[J]. Natural Gas Chemical Industry, 2020, 45(6): 42-47. | |
30 | Trivedi V, Dalvi S V. Enhancing CO2 hydrate formation: effect of coconut fibers on nucleation kinetics of CO2 hydrates[J]. Journal of Crystal Growth, 2020, 549: 125865. |
31 | Mohammadi A, Babakhanpour N, Javidani A M, et al. Corn's dextrin, a novel environmentally friendly promoter of methane hydrate formation[J]. Journal of Molecular Liquids, 2021, 336: 116855. |
32 | RincóN J, De Lucas A, García M A, et al. Preliminary study on the supercritical carbon dioxide extraction of nicotine from tobacco wastes[J]. Separation Science and Technology, 1998, 33(3): 411-423. |
33 | 郑丹星. 化学工业. 化学热力学教程[M]. 北京: 中国石化出版社, 1995. |
Zheng D X. Chemical Industry. Chemical Thermodynamics[M]. Beijing: China Petrochemical Press, 1995. | |
34 | Banožić M, Babic J, Jokic S. Recent advances in extraction of bioactive compounds from tobacco industrial waste—a review[J]. Industrial Crops and Products, 2020, 144: 112009. |
35 | Liu Y, Chen B Y, Chen Y L, et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage[J]. Energy Technology, 2015, 3(8): 815-819. |
36 | 孙志高, 郭开华, 樊栓狮. 天然气水合物形成促进技术实验研究[J]. 天然气工业, 2004, 24(12): 41-43, 185. |
Sun Z G, Guo K H, Fan S S. Experimental study of promoting natural gas hydrate formation[J]. Natural Gas Industry, 2004, 24(12): 41-43, 185. | |
37 | Vargaftik N B, Volkov B N, Voljak L D. International tables of the surface tension of water[J]. Journal of Physical and Chemical Reference Data, 1983, 12(3): 817-820. |
38 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton, FL: CRC Press, 2008. |
39 | Lee S Y, Zhang J S, Mehta R, et al. Methane hydrate equilibrium and formation kinetics in the presence of an anionic surfactant[J]. The Journal of Physical Chemistry C, 2007, 111(12): 4734-4739. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[5] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[8] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[9] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[10] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[11] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[12] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[13] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[14] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[15] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||