1 |
Poonam, Sharma K, Arora A, et al. Review of supercapacitors: materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825.
|
2 |
Wang Y F, Zhang L, Hou H Q, et al. Recent progress in carbon-based materials for supercapacitor electrodes: a review[J]. Journal of Materials Science, 2021, 56(1): 173-200.
|
3 |
Raza W, Ali F, Raza N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52: 441-473.
|
4 |
Frackowiak E. Carbon materials for supercapacitor application[J]. Physical Chemistry Chemical Physics: PCCP, 2007, 9(15): 1774-1785.
|
5 |
Iro Z S, Subramani C, Dash S S. A brief review on electrode materials for supercapacitor[J]. International Journal of Electrochemical Science, 2016, 11: 10628-10643.
|
6 |
Nandi D, Mohan V B, Bhowmick A K, et al. Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review[J]. Journal of Materials Science, 2020, 55(15): 6375-6400.
|
7 |
Kandasamy M, Sahoo S, Nayak S K, et al. Recent advances in engineered metal oxide nanostructures for supercapacitor applications: experimental and theoretical aspects[J]. Journal of Materials Chemistry A, 2021, 9(33): 17643-17700.
|
8 |
Meng Q F, Cai K F, Chen Y X, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285.
|
9 |
Naskar P, Maiti A, Chakraborty P, et al. Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers[J]. Journal of Materials Chemistry A, 2021, 9(4): 1970-2017.
|
10 |
Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12.
|
11 |
Wang K, Wu H P, Meng Y N, et al. Conducting polymer nanowire arrays for high performance supercapacitors[J]. Small, 2014, 10(1): 14-31.
|
12 |
Han Y Q, Dai L M. Conducting polymers for flexible supercapacitors[J]. Macromolecular Chemistry and Physics, 2019, 220(3): 1800355.
|
13 |
Huang Y, Li H F, Wang Z F, et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor[J]. Nano Energy, 2016, 22: 422-438.
|
14 |
Shimoga G, Palem R R, Choi D S, et al. Polypyrrole-based metal nanocomposite electrode materials for high-performance supercapacitors[J]. Metals, 2021, 11(6): 905.
|
15 |
Bocchetta P, Frattini D, Tagliente M, et al. Electrochemical deposition of polypyrrole nanostructures for energy applications: a review[J]. Current Nanoscience, 2020, 16(4): 462-477.
|
16 |
Chen S Y, Liu H, Wang Y, et al. Electrochemical capacitance of spherical nanoparticles formed by electrodeposition of intrinsic polypyrrole onto Au electrode[J]. Electrochimica Acta, 2017, 232: 72-79.
|
17 |
Huang Z H, Song Y, Xu X X, et al. Ordered polypyrrole nanowire arrays grown on a carbon cloth substrate for a high-performance pseudocapacitor electrode[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25506-25513.
|
18 |
Wang Z L, He X J, Ye S H, et al. Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 642-647.
|
19 |
Ramesh S, Yadav H M, Karuppasamy K, et al. Fabrication of manganese oxide@nitrogen doped graphene oxide/polypyrrole (MnO2@NGO/PPy) hybrid composite electrodes for energy storage devices[J]. Journal of Materials Research and Technology, 2019, 8(5): 4227-4238.
|
20 |
Abdah M A A M, Edris N M M A, Kulandaivalu S, et al. Supercapacitor with superior electrochemical properties derived from symmetrical manganese oxide-carbon fiber coated with polypyrrole[J]. International Journal of Hydrogen Energy, 2018, 43(36): 17328-17337.
|
21 |
Tian D, Cheng H, Li Q, et al. The ordered polyaniline nanowires wrapped on the polypyrrole nanotubes as electrode materials for electrochemical energy storage[J]. Electrochimica Acta, 2021, 398: 139328.
|
22 |
Chen S Y, Cheng H, Tian D, et al. Controllable synthesis, core-shell nanostructures, and supercapacitor performance of highly uniform polypyrrole/polyaniline nanospheres[J]. ACS Applied Energy Materials, 2021, 4(4): 3701-3711.
|
23 |
Hu C L, Zhang X Y, Liu B, et al. Orderly and highly dense polyaniline nanorod arrays fenced on carbon nanofibers for all-solid-state flexible electrochemical energy storage[J]. Electrochimica Acta, 2020, 338: 135846.
|
24 |
Liu B, Zhang X Y, Tian D, et al. In situ growth of oriented polyaniline nanorod arrays on the graphite flake for high-performance supercapacitors[J]. ACS Omega, 2020, 5(50): 32395-32402.
|
25 |
Chen S Y, Liu B, Zhang X Y, et al. Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor[J]. Electrochimica Acta, 2019, 300: 373-379.
|
26 |
Wang Y, Xu S Q, Cheng H, et al. Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method[J]. Applied Surface Science, 2018, 428: 315-321.
|
27 |
Chen S Y, Zhang X Y, Liu B, et al. Characterisations of carbon-fenced conductive silver nanowires-supported hierarchical polyaniline nanowires[J]. Electrochimica Acta, 2018, 292: 435-445.
|
28 |
Nguyen Thi Le H, Bernard M C, Garcia-Renaud B, et al. Raman spectroscopy analysis of polypyrrole films as protective coatings on iron[J]. Synthetic Metals, 2004, 140(2/3): 287-293.
|
29 |
Gao T, Fjellvåg H, Norby P. A comparison study on Raman scattering properties of α- and β-MnO2 [J]. Analytica Chimica Acta, 2009, 648(2): 235-239.
|
30 |
Huang M, Zhao X L, Li F, et al. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes[J]. Journal of Power Sources, 2015, 277: 36-43.
|
31 |
Tabačiarová J, Mičušík M, Fedorko P, et al. Study of polypyrrole aging by XPS, FTIR and conductivity measurements[J]. Polymer Degradation and Stability, 2015, 120: 392-401.
|
32 |
Lv H P, Yuan Y, Xu Q J, et al. Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor[J]. Journal of Power Sources, 2018, 398: 167-174.
|
33 |
Yan J, Fan Z J, Wei T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13): 3825-3833.
|
34 |
Peng S, Liu B, Zhang X Y, et al. Large-area polyaniline nanorod growth on a monolayer polystyrene nanosphere array as an electrode material for supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(12): 14766-14777.
|
35 |
Pang M J, Long G H, Jiang S, et al. One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications[J]. Electrochimica Acta, 2015, 161: 297-304.
|