化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1570-1577.DOI: 10.11949/0438-1157.20221481
蹇建1(), 张嘉明2, 佘祥2, 周虎1, 游奎一2(
), 罗和安2(
)
收稿日期:
2022-11-14
修回日期:
2023-03-06
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
游奎一,罗和安
作者简介:
蹇建(1988—),男,博士,讲师,jianjianjqr@126.com
基金资助:
Jian JIAN1(), Jiaming ZHANG2, Xiang SHE2, Hu ZHOU1, Kuiyi YOU2(
), Hean LUO2(
)
Received:
2022-11-14
Revised:
2023-03-06
Online:
2023-04-05
Published:
2023-06-02
Contact:
Kuiyi YOU, Hean LUO
摘要:
采用浸渍法制备不同钒价态结构的钒磷氧(VPO)复合氧化物催化剂,测试其对NO2氧化环己烷制备己二酸的催化性能,并采用XRD、XPS、H2-TPR和UV-Vis DRS等手段进行表征,考察不同过渡金属掺杂对VPO中钒价态结构的影响,以及催化氧化环己烷性能的影响。研究结果表明,过渡金属的引入能够改变VPO中β-VOPO4和(VO)2P2O7两种晶相结构,从而调变V5+ 和V4+ 的比例,且钒的价态比例对NO2氧化环己烷反应具有重要影响。同时含有V5+ 和V4+ 的M/AlVPO催化剂的催化性能明显高于纯V5+ 的β-VOPO4和纯V4+ 的(VO)2P2O7催化剂。其中,以V4+/V5+ 为0.52的Cu/AlVPO为催化剂时环己烷的转化率最高为65.4%,以V4+/V5+ 为0.66的Ni/AlVPO为催化剂时己二酸的选择性最高为84.8%。
中图分类号:
蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577.
Jian JIAN, Jiaming ZHANG, Xiang SHE, Hu ZHOU, Kuiyi YOU, Hean LUO. Correlation with the redox V4+/V5+ ratio in VPO catalysts for oxidation of cyclohexane by NO2[J]. CIESC Journal, 2023, 74(4): 1570-1577.
Catalyst | Crystal phase ratio/% | ||
---|---|---|---|
β-VOPO4 | (VO)2P2O7 | AlV18PO49 | |
Cr/Al-VPO | 85.41 | 2.34 | 12.25 |
Co/Al-VPO | 59.88 | 22.82 | 17.31 |
Cu/Al-VPO | 33.10 | 38.72 | 28.18 |
Ni/Al-VPO | 32.55 | 45.33 | 22.12 |
Mn/Al-VPO | 33.41 | 46.95 | 19.64 |
表1 M/Al-VPO系列催化剂中β-VOPO4、(VO)2P2O7和AlV18PO49晶相的相对比例
Table 1 The relative ratio of β-VOPO4, (VO)2P2O7 and AlV18PO49 crystalline phases in M/Al-VPO catalysts
Catalyst | Crystal phase ratio/% | ||
---|---|---|---|
β-VOPO4 | (VO)2P2O7 | AlV18PO49 | |
Cr/Al-VPO | 85.41 | 2.34 | 12.25 |
Co/Al-VPO | 59.88 | 22.82 | 17.31 |
Cu/Al-VPO | 33.10 | 38.72 | 28.18 |
Ni/Al-VPO | 32.55 | 45.33 | 22.12 |
Mn/Al-VPO | 33.41 | 46.95 | 19.64 |
Catalyst | V 2p2/3/eV | V5+ /% | V4+/% | V4+/V5+ | |
---|---|---|---|---|---|
V5+ | V4+ | ||||
β-VOPO4 | 518.1 | — | 100 | 0 | 0 |
Cr/Al-VPO | 518.4 | 517.0 | 89.0 | 11.0 | 0.12 |
Co/Al-VPO | 518.7 | 516.5 | 72.1 | 27.9 | 0.39 |
Cu/Al-VPO | 518.7 | 516.6 | 65.6 | 34.4 | 0.52 |
Ni/Al-VPO | 518.3 | 516.9 | 60.3 | 39.7 | 0.66 |
Mn/Al-VPO | 518.8 | 516.6 | 55.1 | 44.9 | 0.81 |
表2 浸渍型M/Al-VPO催化剂V5+ 与V4+ 含量
Table 2 The percentages of V5+ and V4+ in various M/Al-VPO composite catalysts
Catalyst | V 2p2/3/eV | V5+ /% | V4+/% | V4+/V5+ | |
---|---|---|---|---|---|
V5+ | V4+ | ||||
β-VOPO4 | 518.1 | — | 100 | 0 | 0 |
Cr/Al-VPO | 518.4 | 517.0 | 89.0 | 11.0 | 0.12 |
Co/Al-VPO | 518.7 | 516.5 | 72.1 | 27.9 | 0.39 |
Cu/Al-VPO | 518.7 | 516.6 | 65.6 | 34.4 | 0.52 |
Ni/Al-VPO | 518.3 | 516.9 | 60.3 | 39.7 | 0.66 |
Mn/Al-VPO | 518.8 | 516.6 | 55.1 | 44.9 | 0.81 |
催化剂 | CBrCl3转化率/% | 选择性/% | |
---|---|---|---|
溴代环己烷 | 氯代环己烷 | ||
无 | 0.11 | trace | trace |
(VO)2P2O7 | 22.9 | 94.3 | 4.2 |
β-VOPO4 | 68.6 | 83.5 | 12.8 |
Cu/Al-VPO | 87.4 | 83.9 | 11.8 |
Ni/Al-VPO | 76.6 | 84.3 | 12.1 |
Mn/Al-VPO | 73.4 | 86.5 | 11.2 |
Co/Al-VPO | 72.5 | 84.9 | 12.3 |
Cr/Al-VPO | 72.2 | 85.2 | 12.6 |
Ni/Al-VPO① | 0 | — | — |
表3 自由基捕捉实验结果
Table 3 Results of radical capture experiment
催化剂 | CBrCl3转化率/% | 选择性/% | |
---|---|---|---|
溴代环己烷 | 氯代环己烷 | ||
无 | 0.11 | trace | trace |
(VO)2P2O7 | 22.9 | 94.3 | 4.2 |
β-VOPO4 | 68.6 | 83.5 | 12.8 |
Cu/Al-VPO | 87.4 | 83.9 | 11.8 |
Ni/Al-VPO | 76.6 | 84.3 | 12.1 |
Mn/Al-VPO | 73.4 | 86.5 | 11.2 |
Co/Al-VPO | 72.5 | 84.9 | 12.3 |
Cr/Al-VPO | 72.2 | 85.2 | 12.6 |
Ni/Al-VPO① | 0 | — | — |
1 | Liang F T, Zhong W Z, Xiang L P, et al. Synergistic hydrogen atom transfer with the active role of solvent: preferred one-step aerobic oxidation of cyclohexane to adipic acid by N-hydroxyphthalimide[J]. Journal of Catalysis, 2019, 378: 256-269. |
2 | Vernekar D, Dayyan M, Ratha S, et al. Direct oxidation of cyclohexane to adipic acid by a WFeCoO(OH) catalyst: role of Brønsted acidity and oxygen vacancies[J]. ACS Catalysis, 2021, 11(17): 10754-10766. |
3 | Wei H L, Liu S E, Li G X, et al. Numerical modeling of a microreactor for the synthesis of adipic acid via KA oil oxidation[J]. Chemical Engineering Science, 2021, 230: 116208. |
4 | 巩有奎, 赵强, 彭永臻. 不同C/N下SBBR脱氮过程N2O释放及胞外多聚物变化[J].化工学报, 2019, 70(12): 4847-4855. |
Gong Y K, Zhao Q, Peng Y Z. Variation of N2O emission and EPS production during simultaneous nitrification and denitrification in SBBR under different C/N ratio[J]. CIESC Journal, 70(12): 4847-4855. | |
5 | Sato K, Aoki M, Noyori R. A “green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide[J]. Science, 1998, 281(5383): 1646-1647. |
6 | Tortajada A, Ninokata R, Martin R. Ni-catalyzed site-selective dicarboxylation of 1,3-dienes with CO2 [J]. Journal of the American Chemical Society, 2018, 140(6): 2050-2053. |
7 | Deng W P, Yan L F, Wang B J, et al. Efficient catalysts for the green synthesis of adipic acid from biomass[J]. Angewandte Chemie-International Edition, 2021, 60(9): 4712-4719. |
8 | Wei L F, Zhang J X, Deng W P, et al. Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over niobic acid-supported Pt nanoparticles[J]. Chemical Communication, 2019, 55: 8013-8016. |
9 | Wang X, Bian W Y, Ma Y R, et al. Hydroxyl-terminated carbon dots for efficient conversion of cyclohexane to adipic acid[J]. Journal of Colloid and Interface Science, 2021, 591: 281-289. |
10 | Kuznetsov M L, Pombeiro A J L. Metal-free and iron (Ⅱ)-assisted oxidation of cyclohexane to adipic acid with ozone: a theoretical mechanistic study[J]. Journal of Catalysis, 2021, 399: 52-66. |
11 | Shahzeydi A, Ghiaci M, Farrokhpour H, et al. Facile and green synthesis of copper nanoparticles loaded on the amorphous carbon nitride for the oxidation of cyclohexane[J]. Chemical Engineering Journal, 2019, 370: 1310-1321. |
12 | Guo X K, Xu M X, She M Y, et al. Morphology reserved synthesis of discrete nanosheets of CuO@SAPO-34 and pore mouth catalysis for one-pot oxidation of cyclohexane[J]. Angewandte Chemie-International Edition, 2020, 59: 2606-2611. |
13 | Acharyya S S, Ghosh S, Bal R. Nanoclusters of Cu (Ⅱ) supported on nanocrystalline W (Ⅵ) oxide: a potential catalyst for single-step conversion of cyclohexane to adipic acid[J]. Green Chemistry, 2015,17(6): 3490-3499. |
14 | Hwang K C, Sagadevan A. One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light[J]. Science, 2014, 346(6216): 1495-1498. |
15 | Jian J, You K Y, Duan X Z, et al. Boosting one-step conversion of cyclohexane to adipic acid by NO2 and VPO composite catalysts[J]. Chemical Communication, 2016, 52(16): 3320-3323. |
16 | Jian J, You K Y, Luo Q, et al. Supported Ni-Al-VPO/MCM-41 as efficient and stable catalysts for highly selective one-step synthesis of adipic acid from cyclohexane with NO2 [J]. Industrial & Engineering Chemistry Research, 2016, 55(13): 3729-3735. |
17 | 刘瑞霞, 贺滨, 罗琛, 等. 钒磷氧复合氧化物及其在催化领域的应用[J].化工学报, 2018, 69(4): 1261-1275. |
Liu R X, He B, Luo C, et al. Vanadium phosphorous oxide and its catalytic application[J]. CIESC Journal, 2018, 69(4): 1261-1275. | |
18 | Taufiq-Yap Y H, Saw C S. Effect of different calcination environments on the vanadium phosphate catalysts for selective oxidation of propane and n-butane[J]. Catalysis Today, 2008, 131(1/2/3/4): 285-291. |
19 | Liu Y, Guo W L, Guo H S, et al. Cu(Ⅱ)-doped V2O5 mediated persulfate activation for heterogeneous catalytic degradation of benzotriazole in aqueous solution[J]. Separation and Purification Technology, 2020, 230: 115848. |
20 | Zeng H M, Liu D Y, Zhang Y C, et al. Nanostructure Mn-doped V2O5 cathode material fabricated from layered vanadium jarosite[J]. Chemistry of Material, 2015, 27(21): 7331-7336. |
21 | Borah P, Datta A. Exfoliated VOPO4·2H2O dispersed on alumina as a novel catalyst for the selective oxidation of cyclohexane[J]. Applied Catalysis A: General, 2010, 376(1/2): 19-24. |
22 | Xiao C Y, Chen X, Wang Z Y, et al. The novel and highly selective fumed silica-supported VPO for partial oxidation of n-butane to maleic anhydride[J]. Catalysis Today, 2004, 93/94/95: 223-228. |
23 | Li W J, Xiao Y, Guo S P, et al. Increasing maleic anhydride selectivity for n-butane oxidation by Y-modified VPO catalysts[J]. Fuel, 2023, 333: 126214. |
24 | Zhu Y J, Li J, Xie X F, et al. Effect of different VOPO4 phase catalysts on oxidative dehydrogenation of cyclohexane to cyclohexene in acetic acid[J]. Journal of Molecular Catalysis A: Chemical, 2006, 246: 185-189. |
25 | Feng R M, Yang X J, Ji W J, et al. VPO catalysts supported on H3PO4-treated ZrO2 highly active for n-butane oxidation[J]. Journal of Catalysis, 2007, 246: 166-176. |
26 | He B, Li Z H, Zhang H L, et al. Synthesis of vanadium phosphorus oxide catalysts assisted by deep-eutectic solvents for n-butane selective oxidation[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2857-2867. |
27 | 黄继武,李周. 多晶材料X射线衍射:实验原理、方法与应用[M]. 北京:冶金工业出版社,2012: 97-108. |
Huang J W, Li Z. X-Ray Diffraction of Polycrystalline Materials: Experimental Principles, Methods and Applications[M]. Beijing: Metallurgical Industry Press, 2012: 97-108. | |
28 | Rajan N P, Rao G S, Pavankumar V, et al. Vapour phase dehydration of glycerol over VPO catalyst supported on zirconium phosphate[J]. Catalysis Science & Technology, 2014, 4(1): 81-92. |
29 | Cavani F, Ligi S, Monti T, et al. Relationship between structural/surface characteristics and reactivity in n-butane oxidation to maleic anhydride: the role of V3+ species[J]. Catalysis Today, 2000, 61(1/2/3/4): 203-210. |
30 | Abon M, Bere K E, Tuel A, et al. Evolution of a VPO catalyst in n-butane oxidation reaction during the activation time[J]. Journal of Catalysis, 1995, 156(1): 28-36. |
31 | Kleimenov E, Bluhm H, Hävecker M, et al. XPS investigations of VPO catalysts under reaction conditions[J]. Surface Science, 2005, 575(1/2): 181-188. |
32 | Yang D, Sararuk C, Suzuki K, et al. Effect of calcination temperature on the catalytic activity of VPO for aldol condensation of acetic acid and formalin[J]. Chemical Engineering Journal, 2016, 300: 160-168. |
33 | 徐淑媛, 李宁. 硝酸氧化醇酮生产己二酸反应机理和影响因素[J]. 工业催化, 2007, 15(10): 24-26. |
Xu S Y, Li N. Mechanism and influential factors for synthesis of adipic acid by oxidation of cyclohexanone/ol with nitric acid[J]. Industrial Catalysis, 2007, 15(10): 24-26. | |
34 | Pierini B T, Lombardo E A. Structure and properties of Cr promoted VPO catalysts[J]. Materials Chemistry and Physics, 2005, 92(1): 197-204. |
35 | Li X K, Ji W J, Zhao J, et al. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15[J]. Journal of Catalysis, 2005, 236(2): 181-189. |
36 | Sakaguchi S, Nishiwaki Y, Kitamura T, et al. Efficient catalytic alkane nitration with NO2 under air assisted by N-hydroxyphthalimide[J]. Angewandte Chemie-International Edition, 2001, 40(1): 222-224. |
37 | Cook G K, Mayer J M. C—H bond activation by metal oxo species: oxidation of cyclohexane by chromyl chloride[J]. Journal of the American Chemical Society, 1994, 116(5): 1855-1868. |
[1] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[2] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[3] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[4] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
[5] | 叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
[6] | 孙静, 董一霖, 李法齐, 李文翔, 马晓玲, 王文龙. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315. |
[7] | 张眉佳, 吴登峰, 许昊翔, 程道建. 氢氧直接合成过氧化氢用钯基催化剂研究进展[J]. 化工学报, 2021, 72(1): 292-303. |
[8] | 梁文俊, 朱玉雪, 石秀娟, 孙慧频, 任思达. Ce掺杂对Ru/TiO2催化氯苯性能的影响[J]. 化工学报, 2020, 71(8): 3585-3593. |
[9] | 霍二福, 李迎春, 杨帅, 冯明, 程伟琴, 王柏楠, 魏新军. 环己醇精馏残液催化加氢分离二环己基醚工艺研究[J]. 化工学报, 2020, 71(7): 3132-3139. |
[10] | 寇超兴, 刘洋, 曾爱武. 聚甲氧基二甲醚+水+环己烷+氯化钠四元体系的液液平衡研究[J]. 化工学报, 2020, 71(2): 507-515. |
[11] | 陶长元, 王秀秀, 刘作华, 刘仁龙, 栾进华. 湿法磷酸浸出强化及有机质去除研究[J]. 化工学报, 2020, 71(10): 4792-4799. |
[12] | 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 络合-溶剂热法制备钯基催化剂及其催化氧化间二甲苯性能[J]. 化工学报, 2019, 70(3): 937-943. |
[13] | 王超, 李长明, 皇甫林, 李萍, 杨运泉, 高士秋, 余剑, 许光文. 赤泥催化剂的制备及其对模拟烟气中微量氨的脱除性能[J]. 化工学报, 2019, 70(3): 1056-1064. |
[14] | 芮泽宝, 杨晓庆, 陈俊妃, 纪红兵. 光热协同催化净化挥发性有机物的研究进展及展望[J]. 化工学报, 2018, 69(12): 4947-4958. |
[15] | 李习都, 谢新玲, 张友全, 鞠全亮. 环己烷辅助超临界CO2流体制备淀粉酯[J]. 化工学报, 2017, 68(6): 2526-2534. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 414
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 314
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||