化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1561-1569.DOI: 10.11949/0438-1157.20221300
杨辉著1(), 兰精灵2(), 杨月1, 梁嘉林1, 吕传文1, 朱永刚1()
收稿日期:
2022-09-27
修回日期:
2023-03-10
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
杨辉著,朱永刚
作者简介:
杨辉著(1988—),男,博士,助理教授,yanghuizhu@hit.edu.cn基金资助:
Huizhu YANG1(), Jingling LAN2(), Yue YANG1, Jialin LIANG1, Chuanwen LYU1, Yonggang ZHU1()
Received:
2022-09-27
Revised:
2023-03-10
Online:
2023-04-05
Published:
2023-06-02
Contact:
Huizhu YANG, Yonggang ZHU
摘要:
为探究平板热管在高热通量和逆重力环境中的传热特性,设计并制作了一种具有泡沫金属结构的铜-水平板热管,系统地研究了不同放置方式、充液率和热功率对平板热管热响应特性和热阻的影响。实验结果表明:平板热管可实现快速启动,60 s内达到稳定,随着充液率增加,热管热阻先降低后升高,充液率为20%时性能最佳,放置方式对热管性能影响明显,顺重力性能最佳,在300 W时得到最小热阻为0.0109 K/W。相较于文献中的热管,此热管不仅获得了更低的热阻值,亦可实现更高热通量的有效导热。
中图分类号:
杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569.
Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe[J]. CIESC Journal, 2023, 74(4): 1561-1569.
参数 | 数值 |
---|---|
热管外尺寸长度/mm | 156 |
热管外尺寸宽度/mm | 36 |
上管壳厚度/mm | 1.5 |
下管壳厚度/mm | 1 |
空腔厚度/mm | 5 |
吸液芯厚度/mm | 0.5 |
放置方向 | 顺重力、水平、逆重力 |
充液率/% | 5、10、20、30 |
加热功率/ W | 10~300 |
表1 热管参数
Table 1 Parameters of heat pipe
参数 | 数值 |
---|---|
热管外尺寸长度/mm | 156 |
热管外尺寸宽度/mm | 36 |
上管壳厚度/mm | 1.5 |
下管壳厚度/mm | 1 |
空腔厚度/mm | 5 |
吸液芯厚度/mm | 0.5 |
放置方向 | 顺重力、水平、逆重力 |
充液率/% | 5、10、20、30 |
加热功率/ W | 10~300 |
1 | Faghri A. Review and advances in heat pipe science and technology[J]. Journal of Heat Transfer, 2012, 134(12): 123001. |
2 | Vasiliev L, Lossouarn D, Romestant C, et al. Loop heat pipe for cooling of high-power electronic components[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 301-308. |
3 | Tang H, Tang Y, Wan Z, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383-400. |
4 | Chan C W, Siqueiros E, Ling-Chin J, et al. Heat utilisation technologies: a critical review of heat pipes[J]. Renewable & Sustainable Energy Reviews, 2015, 50: 615-627. |
5 | Chen X, Ye H, Fan X, et al. A review of small heat pipes for electronics[J]. Applied Thermal Engineering, 2016, 96: 1-17. |
6 | Tang H, Tang Y, Yuan W, et al. Fabrication and capillary characterization of axially micro-grooved wicks for aluminium flat-plate heat pipes[J]. Applied Thermal Engineering, 2018, 129: 907-915. |
7 | Lurie S A, Rabinskiy L N, Solyaev Y O. Topology optimization of the wick geometry in a flat plate heat pipe[J]. International Journal of Heat and Mass Transfer, 2019, 128: 239-247. |
8 | Moon S H, Park Y W, Rhi S H. The carbon wire bundle’s constructing as a capillary wick in the flat thin heat pipe[J]. Applied Thermal Engineering, 2017, 126: 1177-1184. |
9 | 曹海亮, 张红飞, 左潜龙, 等. 梯形微槽道表面池沸腾换热性能研究[J]. 化工学报, 2021, 72(8): 4111-4120. |
Cao H L, Zhang H F, Zuo Q L, et al. Study on pool boiling heat transfer performance of trapezoidal microchannel surface[J]. CIESC Journal, 2021, 72(8): 4111-4120. | |
10 | 李孝军, 屈健, 韩新月, 等. 微槽道脉动热管的启动及传热特性[J]. 化工学报, 2016, 67(6): 2263-2270. |
Li X J, Qu J, Han X Y, et al. Start-up and heat transfer performance of micro-grooved oscillating heat pipe[J]. CIESC Journal, 2016, 67(6): 2263-2270. | |
11 | Siavashi M, Bahrami H, Aminian E. Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams[J]. Applied Thermal Engineering, 2018, 138: 465-474. |
12 | 赵雅鑫, 赖展程, 胡海涛. R1234ze(E)在泡沫金属管内的流动沸腾换热和压降特性[J]. 化工学报, 2021, 72(10): 5074-5081. |
Zhao Y X, Lai Z C, Hu H T. Flow boiling heat transfer and pressure drop characteristics of R1234ze(E) in metal foam filled tubes[J]. CIESC Journal, 2021, 72(10): 5074-5081. | |
13 | 朱明汉, 白鹏飞, 胡艳鑫, 等. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357. |
Zhu M H, Bai P F, Hu Y X, et al. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick[J]. CIESC Journal, 2019, 70(4): 1349-1357. | |
14 | 刘腾庆, 闫文韬, 杨鑫, 等. 强化平板热管传热性能的研究进展[J]. 化工学报, 2021, 72(11): 5468-5480. |
Liu T Q, Yan W T, Yang X, et al. Research progress on enhanced thermal performance of flat plate heat pipe[J]. CIESC Journal, 2021, 72(11): 5468-5480. | |
15 | Li Y, He H F, Zeng Z X. Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick[J]. Applied Thermal Engineering, 2013, 50(1): 342-351. |
16 | Zhang S, Chen J, Sun Y, et al. Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe[J]. Renewable Energy, 2019, 135(12): 1133-1143. |
17 | Yao S G, Deng J W. Experimental investigation on the heat transfer performance of heat pipes with porous copper foam wicks[J]. Materials Research Innovations, 2015, 19(sup5): 617-622. |
18 | 宋赫, 董景明, 韩志涛, 等. 烧结参数对镍粉毛细芯性能的影响[J]. 化工学报, 2017, 68(S1): 178-183. |
Song H, Dong J M, Han Z T, et al. Effects of sintering parameters on performance of Ni porous wick[J]. CIESC Journal, 2017, 68(S1): 178-183. | |
19 | Zhang Y, Du Y, Shum C, et al. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate[J]. Scientific Reports, 2016, 6: 24972. |
20 | 马奕新, 金宇, 张虎, 等. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601. |
Ma Y X, Jin Y, Zhang H, et al. Experimental study on heat transfer performance of finned gravity heat pipe[J]. CIESC Journal, 2020, 71(2): 594-601. | |
21 | Tharayil T, Asirvatham L G, Cassie C F M, et al. Performance of cylindrical and flattened heat pipes at various inclinations including repeatability in anti-gravity—a comparative study[J]. Applied Thermal Engineering, 2017, 122: 685-696. |
22 | Wang H, Bai P, Zhou H, et al. An integrated heat pipe coupling the vapor chamber and two cylindrical heat pipes with high anti-gravity thermal performance[J]. Applied Thermal Engineering, 2019, 159: 113816. |
23 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 热管传热性能试验方法: [S]. 北京: 中国标准出版社, 2009. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Testing method for heat transfer performance of heat pipes: [S]. Beijing: Standards Press of China, 2009. | |
24 | 台湾热管理协会. 微小型热管性能量测标准草案: TTMA-HP—2015 [S]. 台湾: 台湾热管理协会标委会, 2015. |
Taiwan Thermal Management Association. Standard testing method for the performance of miniature heat pipes: TTMA-HP—2015 [S]. Taiwan: Taiwan Thermal Management Association Standard Committee, 2015. | |
25 | Lv L, Li J. Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick[J]. Applied Thermal Engineering, 2017, 122: 593-600. |
26 | Xu P, Li Q. Visualization study on the enhancement of heat transfer for the groove flat-plate heat pipe with nanoflower coated CuO layer[J]. Applied Physics Letters, 2017, 111(14): 141609. |
27 | Chen G, Tang Y, Wan Z, et al. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics[J]. International Communications in Heat and Mass Transfer, 2019, 100: 12-19. |
28 | Yang K S, Tu C W, Zhang W H, et al. A novel oxidized composite braided wires wick structure applicable for ultra-thin flattened heat pipes[J]. International Communications in Heat and Mass Transfer, 2017, 88: 84-90. |
29 | Go J S. Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling[J]. Sensors and Actuators A: Physical, 2005, 121(2): 549-556. |
30 | Chen J S, Chou J H. Cooling performance of flat plate heat pipes with different liquid filling ratios[J]. International Journal of Heat & Mass Transfer, 2014, 77: 874-882. |
31 | Ji X, Xu J, Abanda A M. Copper foam based vapor chamber for high heat flux dissipation[J]. Experimental Thermal and Fluid Science, 2012, 40: 93-102. |
32 | Stubblebine M J, Catton I. Passivation and performance of inorganic aqueous solutions in a grooved aluminum flat heat pipe[J]. Journal of Heat Transfer, 2015, 137(5): 052901. |
33 | Han X, Wang Y, Liang Q. Investigation of the thermal performance of a novel flat heat pipe sink with multiple heat sources[J]. International Communications in Heat and Mass Transfer, 2018, 94: 71-76. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 申利梅, 胡博兴, 谢雨霏, 曾伟豪, 张晓屿. 超薄平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(S1): 198-205. |
[5] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[8] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[9] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||