化工学报 ›› 2023, Vol. 74 ›› Issue (1): 192-204.DOI: 10.11949/0438-1157.20221314
收稿日期:
2022-10-08
修回日期:
2022-12-03
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
李先锋
作者简介:
鲁文静(1991—),女,博士,副研究员,luwenjing@dicp.ac.cn
基金资助:
Received:
2022-10-08
Revised:
2022-12-03
Online:
2023-01-05
Published:
2023-03-20
Contact:
Xianfeng LI
摘要:
液流电池具有安全性高、性价比高、寿命长、环境友好等特点,是大规模储能的首选技术之一。离子传导膜是液流电池的关键材料之一,其性质和成本与液流电池储能系统的性能和成本直接相关。多孔离子传导膜基于“尺寸筛分”效应实现对活性物质的隔离和对载流子的传导,具有选择性高、离子传导性高和稳定性好等特点,在液流电池中具有良好的应用前景。通过多孔离子传导膜的结构调控,可以进一步优化多孔离子传导膜的选择性、传导性等性能,从而推动液流电池的产业化。本文基于多孔离子传导膜的研究进展,总结不同多孔离子传导膜的修饰策略,包括成膜参数的调节、混合基质多孔离子传导膜的制备、 复合多孔离子传导膜的制备和后处理,为离子传导膜进一步的结构调控和性能优化提供理论指导。
中图分类号:
鲁文静, 李先锋. 液流电池多孔离子传导膜研究进展[J]. 化工学报, 2023, 74(1): 192-204.
Wenjing LU, Xianfeng LI. Research process of porous ion conducting membranes for flow batteries[J]. CIESC Journal, 2023, 74(1): 192-204.
聚合物 | 制备方法 | 调节参数 | 体系 | 电流密度/(mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PI① | 模板法(β-CD) | — | VFB | 100 | 约100 | >80 | [ |
吡啶功能化的PPEK | VIPS | 温度、相对湿度、暴露时间、 溶剂组成 | VFB | 140 | 97.2 | 81.0 | [ |
PBI | NIPS | 聚合物浓度 | V/MB③ | 40 | 99.45 | 86.10 | [ |
PBI | VIPS | 聚合物浓度、溶剂类型 | VFB | 120 | >98.5 | 81.0 | [ |
PEI | 溶剂蒸发法+NIPS | 溶剂挥发时间、造孔剂含量 | Zn/TEMPO-OH | 20 | >98 | 约77 | [ |
Nafion/PVDF | 模板法(PEG) | Nafion和PEG含量 | VFB | 100 | 96.1 | 83.8 | [ |
PES/SPEEK② | NIPS | SPEEK含量 | ARS/Fe④ | 40 | 98.28 | 85.81 | [ |
PBI | NIPS | 非溶剂浴组成 | VFB | 80 | 99.0 | 91.3 | [ |
SPES | 模板法(IL) | 离子液体含量 | VFB | 100 | 98.8 | 84.1 | [ |
PBI | NIPS | 非溶剂浴组成 | VFB | 80 | 99.3 | 89.9 | [ |
PES/SPEEK | NIPS | 非溶剂浴组成 | VFB | 80 | 98.5 | 90.4 | [ |
PES/SPEEK | 模板法(酚酞) | 模板剂含量 | VFB | 80 | 94.52 | 81.66 | [ |
PBI | VIPS | 制膜厚度 | VFB | 80 | 98.87 | 90.11 | [ |
PES/SPEEK | SIPS | 高沸点溶剂含量 | VFB | 40 | >99 | >92 | [ |
PES | NIPS | 造孔剂含量 | VFB | 80 | 92.4 | 76.1 | [ |
PAN⑤ | NIPS | 溶剂组成 | VFB | 80 | 95 | 约79 | [ |
PBI | 模板法(SiO2) | SiO2含量 | VFB | 80 | 99.5 | 87.9 | [ |
表1 优化前后的多孔离子传导膜的性能对比
Table 1 Performance comparison of porous ion conducting membranes before and after being optimized
聚合物 | 制备方法 | 调节参数 | 体系 | 电流密度/(mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PI① | 模板法(β-CD) | — | VFB | 100 | 约100 | >80 | [ |
吡啶功能化的PPEK | VIPS | 温度、相对湿度、暴露时间、 溶剂组成 | VFB | 140 | 97.2 | 81.0 | [ |
PBI | NIPS | 聚合物浓度 | V/MB③ | 40 | 99.45 | 86.10 | [ |
PBI | VIPS | 聚合物浓度、溶剂类型 | VFB | 120 | >98.5 | 81.0 | [ |
PEI | 溶剂蒸发法+NIPS | 溶剂挥发时间、造孔剂含量 | Zn/TEMPO-OH | 20 | >98 | 约77 | [ |
Nafion/PVDF | 模板法(PEG) | Nafion和PEG含量 | VFB | 100 | 96.1 | 83.8 | [ |
PES/SPEEK② | NIPS | SPEEK含量 | ARS/Fe④ | 40 | 98.28 | 85.81 | [ |
PBI | NIPS | 非溶剂浴组成 | VFB | 80 | 99.0 | 91.3 | [ |
SPES | 模板法(IL) | 离子液体含量 | VFB | 100 | 98.8 | 84.1 | [ |
PBI | NIPS | 非溶剂浴组成 | VFB | 80 | 99.3 | 89.9 | [ |
PES/SPEEK | NIPS | 非溶剂浴组成 | VFB | 80 | 98.5 | 90.4 | [ |
PES/SPEEK | 模板法(酚酞) | 模板剂含量 | VFB | 80 | 94.52 | 81.66 | [ |
PBI | VIPS | 制膜厚度 | VFB | 80 | 98.87 | 90.11 | [ |
PES/SPEEK | SIPS | 高沸点溶剂含量 | VFB | 40 | >99 | >92 | [ |
PES | NIPS | 造孔剂含量 | VFB | 80 | 92.4 | 76.1 | [ |
PAN⑤ | NIPS | 溶剂组成 | VFB | 80 | 95 | 约79 | [ |
PBI | 模板法(SiO2) | SiO2含量 | VFB | 80 | 99.5 | 87.9 | [ |
基底 | 添加剂 | 修饰方法 | 体系 | 电流密度/(mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PVDF | 2D 蛭石纳米片 | 共混-NIPS | 非水系液流电池① | 2 | 97.9 | 90.6 | [ |
PES/SPEEK | 沸石纳米片 | 共混-NIPS | AZIFB | 80 | 约98.5 | 约81.9 | [ |
PVDF | 磺化SiO2 | 溶胶-凝胶法 | VFB | 60 | 90.3 | 75.6 | [ |
PE | 硅酸镍片空心球 | 一步水热法 | AZIFB | 80 | 98.6 | 88.3 | [ |
PP | MOF | 浸没法 | Li/Fe | 4 | 97.4 | 78.6 | [ |
PTFE | SiO2 | 剪切共混法 | VFB | 50 | 93 | 81 | [ |
PAN | SiO2 | 溶胶-凝胶法 | VFB | 80 | 98 | 约79 | [ |
PES | SPEEK | NIPS | AZIFB | 40 | — | 91.92 | [ |
PP | Nafion | 孔填充法 | Zn/Br | 20 | 94.7 | 82.1 | [ |
CMPSF | 1,4-二氨基丁烷(交联剂) | VIPS-浸泡-交联 | VFB | 80 | >99 | 87 | [ |
CMPSF | 咪唑(交联剂) | VIPS-浸泡-交联 | VFB | 80 | 99 | 86 | [ |
PES | PPY② | 吡咯的原位聚合 | VFB | 80 | 96.30 | 87.20 | [ |
PVDF | PVP | 接枝聚合+交联反应 | VFB | 80 | 94.4 | 83.3 | [ |
PSF | NaSS③ | 接枝 | VFB | 80 | — | 78.4 | [ |
CMPSF | 吡啶 | VIPS-接枝 | VFB | 120 | — | >81 | [ |
PE④ | SPEEK | 浸涂 | VFB | 160 | 99 | 76 | [ |
PES/SPEEK | 聚电解质 | 浸没-溶剂响应 层层自组装 | VFB | 80 | — | >88 | [ |
表2 液流电池混合基质多孔离子传导膜汇总
Table 2 Summary of mixed matrix porous ion conducting membranes for flow batteries
基底 | 添加剂 | 修饰方法 | 体系 | 电流密度/(mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PVDF | 2D 蛭石纳米片 | 共混-NIPS | 非水系液流电池① | 2 | 97.9 | 90.6 | [ |
PES/SPEEK | 沸石纳米片 | 共混-NIPS | AZIFB | 80 | 约98.5 | 约81.9 | [ |
PVDF | 磺化SiO2 | 溶胶-凝胶法 | VFB | 60 | 90.3 | 75.6 | [ |
PE | 硅酸镍片空心球 | 一步水热法 | AZIFB | 80 | 98.6 | 88.3 | [ |
PP | MOF | 浸没法 | Li/Fe | 4 | 97.4 | 78.6 | [ |
PTFE | SiO2 | 剪切共混法 | VFB | 50 | 93 | 81 | [ |
PAN | SiO2 | 溶胶-凝胶法 | VFB | 80 | 98 | 约79 | [ |
PES | SPEEK | NIPS | AZIFB | 40 | — | 91.92 | [ |
PP | Nafion | 孔填充法 | Zn/Br | 20 | 94.7 | 82.1 | [ |
CMPSF | 1,4-二氨基丁烷(交联剂) | VIPS-浸泡-交联 | VFB | 80 | >99 | 87 | [ |
CMPSF | 咪唑(交联剂) | VIPS-浸泡-交联 | VFB | 80 | 99 | 86 | [ |
PES | PPY② | 吡咯的原位聚合 | VFB | 80 | 96.30 | 87.20 | [ |
PVDF | PVP | 接枝聚合+交联反应 | VFB | 80 | 94.4 | 83.3 | [ |
PSF | NaSS③ | 接枝 | VFB | 80 | — | 78.4 | [ |
CMPSF | 吡啶 | VIPS-接枝 | VFB | 120 | — | >81 | [ |
PE④ | SPEEK | 浸涂 | VFB | 160 | 99 | 76 | [ |
PES/SPEEK | 聚电解质 | 浸没-溶剂响应 层层自组装 | VFB | 80 | — | >88 | [ |
基底 | 选择层 | 修饰方法 | 体系 | 电流密度/ (mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PAN | PIM-1 | 刮涂 | VFB | 20 | 97.1 | 89.9 | [ |
PVDF | 氧化石墨烯 | 接枝 | VFB | — | — | — | [ |
PES | 石墨烯 | 卷对卷热释放工艺 | VFB | 40 | 90 | 约83 | [ |
PE | PEG/Nafion | 刮涂 | Zn/Br | 40 | 96.63 | 83.37 | [ |
PE | 全氟磺酸/烷氧基硅烷 | 刮涂 | VFB | 60 | 约95 | 约85 | [ |
Celgard | 蛭石纳米片 | 过滤 | 非水系液流电池① | 2 | 95.3 | 90.1 | [ |
PES/SPEEK | LDH | 喷涂 | AZIFB | 200 | >98 | 约82 | [ |
PES/SPEEK | LDH | 原位水热垂直生长 | AZIFB | 260 | 98.92 | 80.45 | [ |
PE | MEPBr②/Nafion | 刮涂 | Zn/Br | 40 | 97.42 | 85.31 | [ |
PE | MOF | 刮涂 | ZIFB③ | 80 | 94.5 | 86.1 | [ |
PES/SPEEK | 聚酰胺 | 界面聚合 | VFB | 80 | 99.2 | 92.1 | [ |
PES/SPEEK | 氮化硼纳米片 | 喷涂 | AZIFB | 80 | 约98.5 | 约87.6 | [ |
PES/SPEEK | ZSM-35 | 界面聚合 | VFB | 80 | > 99 | >91 | [ |
PVDF | PBI | 喷涂 | VFB | 80 | 98.4 | 85.1 | [ |
PES/SPEEK | 分子筛 | 喷涂 | VFB | 200 | >99 | >81 | [ |
PES/SPEEK | Nafion | 喷涂 | VFB | 80 | 约98 | 86.5 | [ |
表3 液流电池复合多孔离子传导膜汇总
Table 3 Summary of composite porous ion conducting membranes for flow batteries
基底 | 选择层 | 修饰方法 | 体系 | 电流密度/ (mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PAN | PIM-1 | 刮涂 | VFB | 20 | 97.1 | 89.9 | [ |
PVDF | 氧化石墨烯 | 接枝 | VFB | — | — | — | [ |
PES | 石墨烯 | 卷对卷热释放工艺 | VFB | 40 | 90 | 约83 | [ |
PE | PEG/Nafion | 刮涂 | Zn/Br | 40 | 96.63 | 83.37 | [ |
PE | 全氟磺酸/烷氧基硅烷 | 刮涂 | VFB | 60 | 约95 | 约85 | [ |
Celgard | 蛭石纳米片 | 过滤 | 非水系液流电池① | 2 | 95.3 | 90.1 | [ |
PES/SPEEK | LDH | 喷涂 | AZIFB | 200 | >98 | 约82 | [ |
PES/SPEEK | LDH | 原位水热垂直生长 | AZIFB | 260 | 98.92 | 80.45 | [ |
PE | MEPBr②/Nafion | 刮涂 | Zn/Br | 40 | 97.42 | 85.31 | [ |
PE | MOF | 刮涂 | ZIFB③ | 80 | 94.5 | 86.1 | [ |
PES/SPEEK | 聚酰胺 | 界面聚合 | VFB | 80 | 99.2 | 92.1 | [ |
PES/SPEEK | 氮化硼纳米片 | 喷涂 | AZIFB | 80 | 约98.5 | 约87.6 | [ |
PES/SPEEK | ZSM-35 | 界面聚合 | VFB | 80 | > 99 | >91 | [ |
PVDF | PBI | 喷涂 | VFB | 80 | 98.4 | 85.1 | [ |
PES/SPEEK | 分子筛 | 喷涂 | VFB | 200 | >99 | >81 | [ |
PES/SPEEK | Nafion | 喷涂 | VFB | 80 | 约98 | 86.5 | [ |
修饰策略 | 优点 | 缺点 |
---|---|---|
调节成膜参数 | 方法简单 | 影响因素众多;最佳条件需要通过大量实验探索;效果有限 |
制备混合基质多孔离子传导膜 | 方法成熟、简单有效;可选择的添加剂多;兼具基体 和添加剂优点,综合性能优异 | 膜阻抗容易升高;必须保证基底和添加剂之间的 相容性;必须保证添加剂在基底中的均匀分布; 添加剂和基底之间可能存在缺陷 |
制备复合多孔离子传导膜 | 方法成熟有效;可选择的无机纳米颗粒和聚合物 种类多;选择层和支撑层可以分别调控 | 具有额外的界面阻抗;电池长期运行过程中选择层 可能脱落 |
后处理 | 方法简单 | 影响因素众多;过度的溶胀或收缩会影响膜的 稳定性;研究不够广泛 |
表4 多孔离子传导膜不同修饰策略的特征
Table 4 Features of different modifying strategies of porous ion conducting membranes
修饰策略 | 优点 | 缺点 |
---|---|---|
调节成膜参数 | 方法简单 | 影响因素众多;最佳条件需要通过大量实验探索;效果有限 |
制备混合基质多孔离子传导膜 | 方法成熟、简单有效;可选择的添加剂多;兼具基体 和添加剂优点,综合性能优异 | 膜阻抗容易升高;必须保证基底和添加剂之间的 相容性;必须保证添加剂在基底中的均匀分布; 添加剂和基底之间可能存在缺陷 |
制备复合多孔离子传导膜 | 方法成熟有效;可选择的无机纳米颗粒和聚合物 种类多;选择层和支撑层可以分别调控 | 具有额外的界面阻抗;电池长期运行过程中选择层 可能脱落 |
后处理 | 方法简单 | 影响因素众多;过度的溶胀或收缩会影响膜的 稳定性;研究不够广泛 |
1 | Tan K M, Babu T S, Ramachandaramurthy V K, et al. Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration[J]. Journal of Energy Storage, 2021, 39: 102591. |
2 | Dowling J A, Rinaldi K Z, Ruggles T H, et al. Role of long-duration energy storage in variable renewable electricity systems[J]. Joule, 2020, 4(9): 1907-1928. |
3 | Shan R, Reagan J, Castellanos S, et al. Evaluating emerging long-duration energy storage technologies[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112240. |
4 | Sepulveda N A, Jenkins J D, Edington A, et al. The design space for long-duration energy storage in decarbonized power systems[J]. Nature Energy, 2021, 6(5): 506-516. |
5 | Zhang C K, Li X F. Perspective on organic flow batteries for large-scale energy storage[J]. Current Opinion in Electrochemistry, 2021, 30: 100836. |
6 | Kwabi D G, Ji Y, Aziz M J. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review[J]. Chemical Reviews, 2020, 120(14): 6467-6489. |
7 | Zhang H M, Lu W J, Li X F. Progress and perspectives of flow battery technologies[J]. Electrochemical Energy Reviews, 2019, 2(3): 492-506. |
8 | Luo J, Hu B, Hu M W, et al. Status and prospects of organic redox flow batteries toward sustainable energy storage[J]. ACS Energy Letters, 2019, 4(9): 2220-2240. |
9 | Thaller L H. Electrically rechargeable redox flow cells[C]//9th Intersociety Energy Conversion Engineering Conference Proceedings. New York: American Society of Mechanical Engineers, 1974: 924-928. |
10 | Chalamala B R, Soundappan T, Fisher G R, et al. Redox flow batteries: an engineering perspective[J]. Proceedings of the IEEE, 2014, 102(6): 976-999. |
11 | Yang Z G, Zhang J L, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
12 | Chen Q R, Lv Y G, Yuan Z Z, et al. Organic electrolytes for pH-neutral aqueous organic redox flow batteries[J]. Advanced Functional Materials, 2022, 32(9): 2108777. |
13 | Liu Y Z, Chen Q, Sun P, et al. Organic electrolytes for aqueous organic flow batteries[J]. Materials Today Energy, 2021, 20: 100634. |
14 | Machado C A, Brown G O, Yang R D, et al. Redox flow battery membranes: improving battery performance by leveraging structure-property relationships[J]. ACS Energy Letters, 2021, 6(1): 158-176. |
15 | Li X F, Zhang H M, Mai Z S, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy & Environmental Science, 2011, 4(4): 1147-1160. |
16 | Lu W J, Yuan Z Z, Zhao Y Y, et al. Porous membranes in secondary battery technologies[J]. Chemical Society Reviews, 2017, 46(8): 2199-2236. |
17 | Ran J, Wu L, He B, et al. Ion exchange membranes: new developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291. |
18 | Pärnamäe R, Mareev S, Nikonenko V, et al. Bipolar membranes: a review on principles, latest developments, and applications[J]. Journal of Membrane Science, 2021, 617: 118538. |
19 | Yuan Z Z, Li X F, Duan Y Q, et al. Highly stable membranes based on sulfonated fluorinated poly(ether ether ketone)s with bifunctional groups for vanadium flow battery application[J]. Polymer Chemistry, 2015, 6(30): 5385-5392. |
20 | Yuan Z Z, Li X F, Zhao Y Y, et al. Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19446-19454. |
21 | Yuan Z Z, Li X F, Duan Y Q, et al. Application and degradation mechanism of polyoxadiazole based membrane for vanadium flow batteries[J]. Journal of Membrane Science, 2015, 488: 194-202. |
22 | Zhang H Z, Zhang H M, Li X F, et al. Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)?[J]. Energy & Environmental Science, 2011, 4(5): 1676-1679. |
23 | Xu W J, Long J, Liu J, et al. A novel porous polyimide membrane with ultrahigh chemical stability for application in vanadium redox flow battery[J]. Chemical Engineering Journal, 2022, 428: 131203. |
24 | Zhou X J, Xue R, Zhong Y G, et al. Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries[J]. Journal of Membrane Science, 2020, 595: 117614. |
25 | Wang F R, Zhang Z H, Jiang F J. Dual-porous structured membrane for ion-selection in vanadium flow battery[J]. Journal of Power Sources, 2021, 506: 230234. |
26 | Chen D J, Li D D, Li X F. Hierarchical porous poly (ether sulfone) membranes with excellent capacity retention for vanadium flow battery application[J]. Journal of Power Sources, 2017, 353: 11-18. |
27 | Che X F, Zhao H, Ren X R, et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery[J]. Journal of Membrane Science, 2020, 611: 118359. |
28 | Wang Z Q, Zhang S H, Liu Q, et al. Pyridinium functionalized poly(phthalazinone ether ketone) with pendant phenyl groups porous membranes for vanadium flow battery application by vapor induced phase separation[J]. Journal of Membrane Science, 2022, 656: 120646. |
29 | Chen D J, Liu G Y, Liu J, et al. Porous polybenzimidazole membranes with positive charges enable an excellent anti-fouling ability for vanadium-methylene blue flow battery[J]. Journal of Energy Chemistry, 2022, 68: 247-254. |
30 | Ding L M, Wang Y H, Wang L H, et al. Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2022, 642: 119934. |
31 | Zhao Y Y, Xiang P Y, Wang Y, et al. A high ion-conductive and stable porous membrane for neutral aqueous Zn-based flow batteries[J]. Journal of Membrane Science, 2021, 640: 119804. |
32 | Chen D J, Duan W Q, He Y Y, et al. Porous membrane with high selectivity for alkaline quinone-based flow batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48533-48541. |
33 | Shi M Q, Dai Q, Li F, et al. Membranes with well-defined selective layer regulated by controlled solvent diffusion for high power density flow battery[J]. Advanced Energy Materials, 2020, 10(34): 2001382. |
34 | Qiao L, Zhang H M, Lu W J, et al. Advanced porous membranes with tunable morphology regulated by ionic strength of nonsolvent for flow battery[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24107-24113. |
35 | Qiao L, Zhang H M, Lu W J, et al. Advanced porous membranes with slit-like selective layer for flow battery[J]. Nano Energy, 2018, 54: 73-81. |
36 | Yuan Z Z, Duan Y Q, Zhang H Z, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries[J]. Energy & Environmental Science, 2016, 9(2): 441-447. |
37 | Zhang H Z, Ding C, Cao J Y, et al. A novel solvent-template method to manufacture nano-scale porous membranes for vanadium flow battery applications[J]. Journal of Materials Chemistry A, 2014, 2(25): 9524-9531. |
38 | Li Y, Zhang H M, Li X F, et al. Porous poly (ether sulfone) membranes with tunable morphology: fabrication and their application for vanadium flow battery[J]. Journal of Power Sources, 2013, 233: 202-208. |
39 | Liu T, Yuan J S, Zhen Y H, et al. Porous poly(vinylidene fluoride) (PVDF) membrane with 2D vermiculite nanosheets modification for non-aqueous redox flow batteries[J]. Journal of Membrane Science, 2022, 651: 120468. |
40 | Hou X X, Huang K, Xia Y S, et al. Fish‐scale‐like nano‐porous membrane based on zeolite nanosheets for long stable zinc‐based flow battery[J]. AIChE Journal, 2022, 68(9): e17738. |
41 | Ling L, Xiao M, Han D M, et al. Porous composite membrane of PVDF/sulfonic silica with high ion selectivity for vanadium redox flow battery[J]. Journal of Membrane Science, 2019, 585: 230-237. |
42 | Wei X L, Nie Z M, Luo Q T, et al. Nanoporous polytetrafluoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane[J]. Advanced Energy Materials, 2013, 3(9): 1215-1220. |
43 | Zhang H Z, Zhang H M, Li X F, et al. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application[J]. Energy & Environmental Science, 2012, 5(4): 6299-6303. |
44 | Chang N N, Yin Y B, Yue M, et al. A cost‐effective mixed matrix polyethylene porous membrane for long‐cycle high power density alkaline zinc-based flow batteries[J]. Advanced Functional Materials, 2019, 29(29): 1901674. |
45 | Peng S S, Zhang L Y, Zhang C K, et al. Gradient-distributed metal-organic framework-based porous membranes for nonaqueous redox flow batteries[J]. Advanced Energy Materials, 2018, 8(33): 1802533. |
46 | Yuan Z Z, Liu X Q, Xu W B, et al. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life[J]. Nature Communications, 2018, 9: 3731. |
47 | Kim R, Kim H G, Doo G, et al. Ultrathin Nafion-filled porous membrane for zinc/bromine redox flow batteries[J]. Scientific Reports, 2017, 7: 10503. |
48 | Zhao Y Y, Lu W J, Yuan Z Z, et al. Advanced charged porous membranes with flexible internal crosslinking structures for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(13): 6193-6199. |
49 | Zhao Y Y, Li M R, Yuan Z Z, et al. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries[J]. Advanced Functional Materials, 2016, 26(2): 210-218. |
50 | Yuan Z Z, Dai Q, Zhao Y Y, et al. Polypyrrole modified porous poly(ether sulfone) membranes with high performance for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2016, 4(33): 12955-12962. |
51 | Cao J, Yuan Z Z, Li X F, et al. Hydrophilic poly(vinylidene fluoride) porous membrane with well connected ion transport networks for vanadium flow battery[J]. Journal of Power Sources, 2015, 298: 228-235. |
52 | Li Y, Zhang H M, Zhang H Z, et al. Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application[J]. Journal of Membrane Science, 2014, 454: 478-487. |
53 | Zhang H Z, Zhang H M, Zhang F X, et al. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application[J]. Energy & Environmental Science, 2013, 6(3): 776-781. |
54 | Mu D, Yu L H, Yu L W, et al. Toward cheaper vanadium flow batteries: porous polyethylene reinforced membrane with superior durability[J]. ACS Applied Energy Materials, 2018, 1(4): 1641-1648. |
55 | Zhao Y Y, Yuan Z Z, Lu W J, et al. The porous membrane with tunable performance for vanadium flow battery: the effect of charge[J]. Journal of Power Sources, 2017, 342: 327-334. |
56 | Lin R J, Hernandez B V, Ge L, et al. Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces[J]. Journal of Materials Chemistry A, 2018, 6(2): 293-312. |
57 | Hu J, Tang X M, Dai Q, et al. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device[J]. Nature Communications, 2021, 12: 3409. |
58 | Chae I S, Luo T, Moon G H, et al. Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery[J]. Advanced Energy Materials, 2016, 6(16): 1600517. |
59 | Emelin N F, Jusoh N W C, Ting T M, et al. Surface modification of grafted porous polyvinylidine fluoride membrane with graphene oxide for vanadium redox flow battery[J]. Journal of Physics: Conference Series, 2022, 2259(1): 012016. |
60 | Chen Q, Du Y Y, Li K M, et al. Graphene enhances the proton selectivity of porous membrane in vanadium flow batteries[J]. Materials & Design, 2017, 113: 149-156. |
61 | Lu W J, Li T Y, Yuan C G, et al. Advanced porous composite membrane with ability to regulate zinc deposition enables dendrite-free and high-areal capacity zinc-based flow battery[J]. Energy Storage Materials, 2022, 47: 415-423. |
62 | Thong P T, Ajeya K V, Dhanabalan K, et al. A coupled-layer ion-conducting membrane using composite ionomer and porous substrate for application to vanadium redox flow battery[J]. Journal of Power Sources, 2022, 521: 230912. |
63 | Liu T, Zhang C J, Yuan J S, et al. Two-dimensional vermiculite nanosheets-modified porous membrane for non-aqueous redox flow batteries[J]. Journal of Power Sources, 2021, 500: 229987. |
64 | Hu J, Yuan C G, Zhi L P, et al. In situ defect-free vertically aligned layered double hydroxide composite membrane for high areal capacity and long-cycle zinc-based flow battery[J]. Advanced Functional Materials, 2021, 31(31): 2102167. |
65 | Hua L, Lu W J, Li T Y, et al. A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery[J]. Materials Today Energy, 2021, 21: 100763. |
66 | Wu J E, Dai Q, Zhang H M, et al. A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device[J]. Energy Storage Materials, 2021, 35: 687-694. |
67 | Dai Q, Liu Z Q, Huang L, et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery[J]. Nature Communications, 2020, 11: 13. |
68 | Hu J, Yue M, Zhang H M, et al. A boron nitride nanosheets composite membrane for a long-life zinc-based flow battery[J]. Angewandte Chemie International Edition, 2020, 59(17): 6715-6719. |
69 | Dai Q, Lu W J, Zhao Y Y, et al. Advanced scalable zeolite “ions-sieving” composite membranes with high selectivity[J]. Journal of Membrane Science, 2020, 595: 117569. |
70 | Lee W, Jung M, Serhiichuk D, et al. Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries[J]. Journal of Membrane Science, 2019, 591: 117333. |
71 | Yuan Z Z, Zhu X X, Li M R, et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications[J]. Angewandte Chemie International Edition, 2016, 55(9): 3058-3062. |
72 | Li Y, Li X F, Cao J Y, et al. Composite porous membranes with an ultrathin selective layer for vanadium flow batteries[J]. Chemical Communications, 2014, 50(35): 4596-4599. |
73 | Shi M L, Liu L, Tong Y J, et al. Advanced porous polyphenylsulfone membrane with ultrahigh chemical stability and selectivity for vanadium flow batteries[J]. Journal of Applied Polymer Science, 2019, 136(28): 47752. |
74 | Lu W J, Yuan Z Z, Zhao Y Y, et al. High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces[J]. Energy & Environmental Science, 2016, 9(7): 2319-2325. |
75 | Lu W J, Yuan Z Z, Li M R, et al. Solvent-induced rearrangement of ion-transport channels: a way to create advanced porous membranes for vanadium flow batteries[J]. Advanced Functional Materials, 2017, 27(4): 1604587. |
76 | Lu W J, Yuan Z Z, Zhao Y Y, et al. Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application[J]. Energy Storage Materials, 2018, 10: 40-47. |
77 | Lu W J, Qiao L, Dai Q, et al. Solvent treatment: the formation mechanism of advanced porous membranes for flow batteries[J]. Journal of Materials Chemistry A, 2018, 6(32): 15569-15576. |
78 | Lu W J, Zhang H M, Li X. Membranes fabricated by solvent treatment for flow battery: effects of initial structures and intrinsic properties[J]. Journal of Membrane Science, 2019, 577: 212-218. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[13] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[14] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[15] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||