1 |
Bigioni T P, Lin X M, Nguyen T T, et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers[J]. Nature Materials, 2006, 5(4): 265-270.
|
2 |
Xia D Y, Brueck S R J. A facile approach to directed assembly of patterns of nanoparticles using interference lithography and spin coating[J]. Nano Letters, 2004, 4(7): 1295-1299.
|
3 |
Jing J, Reed J, Huang J, et al. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(14): 8046-8051.
|
4 |
Chen R H, Phuoc T X, Martello D. Surface tension of evaporating nanofluid droplets[J]. International Journal of Heat and Mass Transfer, 2011, 54(11): 2459-2466.
|
5 |
Jung Y C, Bhushan B. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces[J]. Journal of Microscopy, 2010, 229(1):127-140.
|
6 |
Zang D Y, Tarafdar S, Yu Y, et al. Evaporation of a droplet: from physics to applications[J]. Physics Reports, 2019, 804: 1-56.
|
7 |
Moffat J R, Sefiane K, Shanahan M E R. Effect of TiO2 nanoparticles on contact line stick-slip behavior of volatile drops[J]. The Journal of Physical Chemistry B, 2009, 113(26): 8860-8866.
|
8 |
Hu H, Larson R G. Analysis of the microfluid flow in an evaporating sessile droplet[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(9): 3963-3971.
|
9 |
Peddie W. The scientific papers of James clerk maxwell[J]. Nature, 1927, 120(3031): 799-800.
|
10 |
Picknett R G, Bexon R. The evaporation of sessile or pendant drops in still air[J]. Journal of Colloid and Interface Science, 1977, 61(2): 336-350.
|
11 |
Chen X M, Ma R Y, Li J T, et al. Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects[J]. Physical Review Letters, 2012, 109(11): 116101.
|
12 |
高明, 孔鹏, 章立新. 恒热流条件下亲疏水表面液滴蒸发特性[J]. 化工学报, 2018, 69(7): 2979-2984.
|
|
Gao M, Kong P, Zhang L X. Character of sessile droplets evaporation on hydrophilic and hydrophobic heating surface with constant heat fluxes[J]. CIESC Journal, 2018, 69(7): 2979-2984.
|
13 |
黄承志, 汤海波, 顾恬, 等. 热敏荧光法用于蒸发液滴近接触线的温度测量[J]. 化工学报, 2021, 72(10): 5142-5149.
|
|
Huang C Z, Tang H B, Gu T, et al. Characterizing the temperature profile near contact lines of an evaporating sessile drop[J]. CIESC Journal, 2021, 72(10): 5142-5149.
|
14 |
闫鑫, 徐进良. 超疏水表面太阳能加热金-水纳米流体液滴蒸发特性[J]. 化工学报, 2019, 70(3): 892-900.
|
|
Yan X, Xu J L. Character of sessile gold-water nanofluid droplet evaporation with solar heating on superhydrophobic surface[J]. CIESC Journal, 2019, 70(3): 892-900.
|
15 |
Birdi K S, Vu D T. Wettability and the evaporation rates of fluids from solid surfaces[J]. Journal of Adhesion Science and Technology, 1993, 7(6): 485-493.
|
16 |
Blake T D, de Coninck J. The influence of solid-liquid interactions on dynamic wetting[J]. Advances in Colloid and Interface Science, 2002, 96(1/2/3): 21-36.
|
17 |
Putnam S A. Microdroplet evaporation on superheated surfaces[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5793-5807.
|
18 |
Dash S, Garimella S V. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(34): 10785-10795.
|
19 |
刘斌, 单亮亮, 邸倩倩, 等. 底板属性对液滴蒸发过程的影响[J]. 工程热物理学报, 2017, 38(9): 1940-1943.
|
|
Liu B, Shan L L, Di Q Q, et al. Effect of substrate properties on droplet evaporation process[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1940-1943.
|
20 |
Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
|
21 |
Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
|
22 |
王宇, 潘振海. 水平及竖直基底上微小固着液滴的蒸发特性分析[J]. 化工进展, 2021, 40(7): 3632-3644.
|
|
Wang Y, Pan Z H. Analysis of evaporation characteristics of small water droplets sessile on horizontal and vertical substrates[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3632-3644.
|
23 |
郭亚丽. 纳米流体固着液滴蒸发等流动与传热问题的LBM分析[D]. 大连: 大连理工大学, 2009.
|
|
Guo Y L. Study of flow and heat transfer in the process such as evaporation of nanofluid sessile droplet with LBM[D]. Dalian: Dalian University of Technology, 2009.
|
24 |
Theodorakis P E, Wang Y J, Chen A Q, et al. Off-lattice Monte-Carlo approach for studying nucleation and evaporation phenomena at the molecular scale[J]. Materials (Basel, Switzerland), 2021, 14(9): 2092.
|
25 |
Wang F C, Wu H A. Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces[J]. Soft Matter, 2013, 9(24): 5703.
|
26 |
唐瑞, 吴春梅, 李友荣. 附壁氩液滴蒸发过程的分子动力学模拟[J]. 工程热物理学报, 2018, 39(6): 1175-1180.
|
|
Tang R, Wu C M, Li Y R. Molecular dynamics simulation of the evaporation process of a sessile argon droplet[J]. Journal of Engineering Thermophysics, 2018, 39(6): 1175-1180.
|
27 |
高山. 纳米结构表面的液滴传输特性及相变过程研究[D]. 武汉: 华中科技大学, 2020.
|
|
Gao S. Study of the droplet transport characteristics and phase transition processes on nanostructured surfaces[D]. Wuhan: Huazhong University of Science and Technology, 2020.
|
28 |
章佳健. 纳米尺度下液滴蒸发的分子动力学研究[D]. 合肥: 中国科学技术大学, 2020.
|
|
Zhang J J. Molecular dynamics study of nanodroplets evaporation[D]. Hefei: University of Science and Technology of China, 2020.
|
29 |
Daubert T E. Physical and Thermodynamic Properties of Pure Compounds: Data Compilation[M]. New York: Hemisphere publishing corp, 1989.
|
30 |
Milne E A. The collected works of J. Willard Gibbs[J]. The Mathematical Gazette, 1948, 32(302): 303-304.
|
31 |
Shanahan M E R. Simple theory of “stick-slip” wetting hysteresis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 1995, 11(3): 1041-1043.
|