化工学报 ›› 2023, Vol. 74 ›› Issue (12): 5016-5026.DOI: 10.11949/0438-1157.20230929
蒋旭浩(), 刘远超(
), 徐一帆, 李耑, 刘新昊, 李梓硕
收稿日期:
2023-09-01
修回日期:
2023-11-13
出版日期:
2023-12-25
发布日期:
2024-02-19
通讯作者:
刘远超
作者简介:
蒋旭浩(1999—),男,硕士研究生,2021540018@bipt.edu.cn
基金资助:
Xuhao JIANG(), Yuanchao LIU(
), Yifan XU, Duan LI, Xinhao LIU, Zishuo LI
Received:
2023-09-01
Revised:
2023-11-13
Online:
2023-12-25
Published:
2024-02-19
Contact:
Yuanchao LIU
摘要:
石墨炔是一种新兴的二维层状材料,在热电领域具有应用前景。基于第一性原理的计算方法,分别对γ-石墨炔、δ-石墨炔和α-石墨炔的热电输运特性进行深入研究,重点探讨三种不同结构对声子热输运、电子电导和热电优值的影响规律。研究结果表明,γ、δ和α结构的石墨炔在室温下具有较低的热导率,分别为31.19947、13.44974、5.87009 W·m-1·K-1,且随温度升高热导率逐渐降低;在电输运方面,三种不同结构的石墨炔在适当载流子掺杂下表现出较高的功率因数,分别为0.135、0.045、0.011 W·m-1·K-2;最终获得最大热电优值ZTmax分别约为2.93、2.22、1.67。不同原子结构的石墨炔材料在热、电领域各具优势,在sp杂化碳原子的合理分配下可形成Dirac锥,或可调小带隙,并获得较低的热导率,热电优值最大可达2.93。不同结构的石墨炔材料的热电性能研究,将有助于其在热电领域的应用,并为二维层状碳纳米材料在热电领域的应用提供借鉴和参考。
中图分类号:
蒋旭浩, 刘远超, 徐一帆, 李耑, 刘新昊, 李梓硕. 基于第一性原理的不同结构石墨炔热电输运特性研究[J]. 化工学报, 2023, 74(12): 5016-5026.
Xuhao JIANG, Yuanchao LIU, Yifan XU, Duan LI, Xinhao LIU, Zishuo LI. Thermoelectric transport properties of graphyne with different structures based on first principles[J]. CIESC Journal, 2023, 74(12): 5016-5026.
石墨炔结构 | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) |
---|---|---|---|---|---|---|
γ-石墨炔 | 6.88968 | 6.88968 | 20 | 90 | 90 | 120 |
δ-石墨炔 | 9.44480 | 9.44480 | 20 | 90 | 90 | 120 |
α-石墨炔 | 6.96272 | 6.96272 | 12 | 90 | 90 | 120 |
表1 γ-石墨炔、δ-石墨炔和α-石墨炔的晶格常数
Table 1 Lattice constant of γ-graphyne, α-graphyne and δ-graphyne
石墨炔结构 | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) |
---|---|---|---|---|---|---|
γ-石墨炔 | 6.88968 | 6.88968 | 20 | 90 | 90 | 120 |
δ-石墨炔 | 9.44480 | 9.44480 | 20 | 90 | 90 | 120 |
α-石墨炔 | 6.96272 | 6.96272 | 12 | 90 | 90 | 120 |
图2 以第一性原理方法计算石墨炔热电特性技术路线示意图
Fig. 2 Schematic diagram of technology roadmap for calculating thermoelectric characteristics of graphyne by first principles method
图3 γ-石墨炔、δ-石墨炔和α-石墨炔的各声子支对热导率贡献程度
Fig.3 Contribution proportion of phonon branches to the total thermal conductivity of γ-graphyne, δ-graphyne and α-graphyne at different temperatures
图6 不同温度下 γ-石墨炔、δ-石墨炔和α-石墨炔的累积晶格热导率随MFP和频率的变化关系
Fig.6 Cumulative lattice thermal conductivity of γ-graphyne, δ-graphyne and α-graphyne as a function of the mean free path and frequency at different temperatures
图9 γ-石墨炔、δ-石墨炔和α-石墨炔在300、500和700 K下的Seebeck系数随载流子浓度的变化
Fig.9 Seebeck coefficients of γ-graphyne, δ-graphyne and α-graphyne at 300, 500 and 700 K as a function of carrier concentration
图11 γ-石墨炔、δ-石墨炔和α-石墨炔在300、500和700 K下的电导率随载流子浓度的变化
Fig.11 Conductivity of γ-graphyne, δ-graphyne and α-graphyne at 300, 500 and 700 K as a function of carrier concentration
1 | Araiz M, Casi Á, Catalán L, et al. Prospects of waste-heat recovery from a real industry using thermoelectric generators: economic and power output analysis[J]. Energy Conversion and Management, 2020, 205: 112376. |
2 | Liu Z H. Challenges for thermoelectric power generation: from a material perspective[J]. Materials Lab, 2022, 1: 220003. |
3 | Qi P F, Liu K, Bi S P, et al. The abnormally excellent figure of merit of 14, 14, 18-graphyne at room temperature: a study on the thermoelectric characteristic of graphyne[J]. ACS Applied Energy Materials, 2022, 5(5): 6363-6372. |
4 | Baughman R H, Eckhardt H, Kertesz M. Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms[J]. The Journal of Chemical Physics, 1987, 87(11): 6687-6699. |
5 | Li G X, Li Y L, Liu H B, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19): 3256-3258. |
6 | He F, Li Y L. Advances on theory and experiments of the energy applications in graphdiyne[J]. CCS Chemistry, 2023, 5(1): 72-94. |
7 | Cui C F, Ouyang T, Tang C, et al. Bayesian optimization-based design of defect gamma-graphyne nanoribbons with high thermoelectric conversion efficiency[J]. Carbon, 2021, 176: 52-60. |
8 | Rodrigues D C M, Lage L L, Venezuela P, et al. Exploring the enhancement of the thermoelectric properties of bilayer graphyne nanoribbons[J]. Physical Chemistry Chemical Physics, 2022, 24(16): 9324-9332. |
9 | 迟宝倩, 刘轶, 徐京城, 等. β石墨炔衍生物结构稳定性及电子结构的密度泛函理论研究[J]. 物理学报, 2016, 65(13): 77-85. |
Chi B Q, Liu Y, Xu J C, et al. Density functional theory study of structure stability and electronic structures of β graphyne derivatives[J]. Acta Physica Sinica, 2016, 65(13): 77-85. | |
10 | Li L Y, Kong X R, Peeters F M. New nanoporous graphyne monolayer as nodal line semimetal: double Dirac points with an ultrahigh Fermi velocity[J]. Carbon, 2019, 141: 712-718. |
11 | Yin W J, Xie Y E, Liu L M, et al. R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons[J]. Journal of Materials Chemistry A, 2013, 1(17): 5341-5346. |
12 | Zhang J D, Cui Y, Wang S W. Lattice thermal conductivity of δ-graphyne—a molecular dynamics study[J]. Physica E-Low-Dimensional Systems and Nanostructures, 2017, 90: 116-122. |
13 | Luu S D N, Duong T A, Phan T B. Effect of dopants and nanostructuring on the thermoelectric properties of ZnO materials[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10(2): 023001. |
14 | Cao L M, Li X B, Zuo M, et al. Perfect negative differential resistance, spin-filter and spin-rectification transport behaviors in zigzag-edged δ-graphyne nanoribbon-based magnetic devices[J]. Journal of Magnetism and Magnetic Materials, 2019, 485: 136-141. |
15 | Hou X, Xie Z J, Li C M, et al. Study of electronic structure, thermal conductivity, elastic and optical properties of α, β, γ-graphyne[J]. Materials, 2018, 11(2): 188. |
16 | Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561. |
17 | Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. |
18 | Blöchl P E, Jepsen O, Andersen O K. Improved tetrahedron method for Brillouin-zone integrations[J]. Physical Review B, 1994, 49(23): 16223-16233. |
19 | Baroni S, de Gironcoli S, dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562. |
20 | Li W, Carrete J, Katcho N A, et al. ShengBTE: a solver of the Boltzmann transport equation for phonons[J]. Computer Physics Communications, 2014, 185(6): 1747-1758. |
21 | Jiang P H, Liu H J, Cheng L, et al. Thermoelectric properties of γ-graphyne from first-principles calculations[J]. Carbon, 2017, 113: 108-113. |
22 | Xi J Y, Long M Q, Tang L, et al. First-principles prediction of charge mobility in carbon and organic nanomaterials[J]. Nanoscale, 2012, 4(15): 4348-4369. |
23 | Gao Y F, Zhang X L, Tang D W, et al. Unexpected anisotropy of (14, 14, 14)-graphyne: a comprehensive study on the thermal transport properties of graphyne based nanomaterials[J]. Carbon, 2019, 143: 189-199. |
24 | 刘远超, 蒋旭浩, 邵钶, 等. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
Liu Y C, Jiang X H, Shao K, et al. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons[J]. CIESC Journal, 2023, 74(6): 2708-2716. | |
25 | Maznev A A, Wright O B. Demystifying UmKlapp vs normal scattering in lattice thermal conductivity[J]. American Journal of Physics, 2014, 82(11): 1062-1066. |
26 | Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306. |
27 | Sun L, Jiang P H, Liu H J, et al. Graphdiyne: a two-dimensional thermoelectric material with high figure of merit[J]. Carbon: 2015, 90: 255-259. |
28 | Goldsmid H J, Sharp J W. Estimation of the thermal band gap of a semiconductor from seebeck measurements[J]. Journal of Electronic Materials, 1999, 28(7): 869-872. |
29 | Cheng L, Liu H J, Zhang J, et al. Effects of van der Waals interactions and quasiparticle corrections on the electronic and transport properties of Bi2Te3 [J]. Physical Review B, 2014, 90(8): 085118. |
30 | Zhang Q, Song Q C, Wang X Y, et al. Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance[J]. Energy & Environmental Science, 2018, 11(4): 933-940. |
31 | Mehdizadeh Dehkordi A, Zebarjadi M, He J, et al. Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials[J]. Materials Science and Engineering R: Reports, 2015, 97: 1-22. |
32 | Tan X J, Shao H Z, Hu T Q, et al. High thermoelectric performance in two-dimensional graphyne sheets predicted by first-principles calculations[J]. Physical Chemistry Chemical Physics, 2015, 35(17): 22872-22881. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[10] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[14] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[15] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||