化工学报 ›› 2024, Vol. 75 ›› Issue (3): 867-876.DOI: 10.11949/0438-1157.20240059
陈饶1,2(), 赵鑫3(
), 陈戴欣1, 姜圣坤3, 廉应江1, 王金波3, 杨梅1, 陈光文1,2(
)
收稿日期:
2024-01-12
修回日期:
2024-02-08
出版日期:
2024-03-25
发布日期:
2024-05-11
通讯作者:
赵鑫,陈光文
作者简介:
陈饶(1998—),男,博士研究生,chenrao@dicp.ac.cn
基金资助:
Rao CHEN1,2(), Xin ZHAO3(
), Daixin CHEN1, Shengkun JIANG3, Yingjiang LIAN1, Jinbo WANG3, Mei YANG1, Guangwen CHEN1,2(
)
Received:
2024-01-12
Revised:
2024-02-08
Online:
2024-03-25
Published:
2024-05-11
Contact:
Xin ZHAO, Guangwen CHEN
摘要:
为实现二硝基甲苯(DNT)的安全高效生产,采用微反应技术,以甲苯为原料、硝硫混酸为硝化剂,研究了甲苯连续二硝化反应过程基本规律。提高反应温度、增大硝酸与甲苯的摩尔比、降低混酸含水量、减小硝硫摩尔比、集成釜式搅拌操作有利于DNT的生成;降低反应温度、提高混酸含水量和硝硫摩尔比,有利于降低2,4-/2,6-DNT比值。针对80/20DNT产品进行了硝化工艺优化。在反应温度75℃、混酸含水量14%(质量分数)、硝硫摩尔比1/4或1/3、搅拌时间5 min条件下,产物中一硝基甲苯(MNT)含量小于0.2%,2,4-和2,6-DNT含量大于96%,2,4-/2,6-DNT比值小于4.25,其他DNT异构体含量均小于4%,符合行业标准。绝热条件下,室温进料,混酸含水量14%(质量分数),硝硫摩尔比1/4,搅拌时间10 min,生产的产品质量符合行业标准。研究结果为甲苯连续二硝化工艺开发及80/20DNT产品的连续制备提供了基础。
中图分类号:
陈饶, 赵鑫, 陈戴欣, 姜圣坤, 廉应江, 王金波, 杨梅, 陈光文. 微反应器内甲苯连续二硝化制备二硝基甲苯[J]. 化工学报, 2024, 75(3): 867-876.
Rao CHEN, Xin ZHAO, Daixin CHEN, Shengkun JIANG, Yingjiang LIAN, Jinbo WANG, Mei YANG, Guangwen CHEN. Continuous dinitration of toluene to dinitrotoluene in a microreactor[J]. CIESC Journal, 2024, 75(3): 867-876.
Item | Quality index | |
---|---|---|
Premium grade | First-grade | |
appearance | no black impurities or suspended solids | |
2,4+2,6-DNT/% | ≥95.0 | ≥95.0 |
2,4-/2,6-DNT | 3.76~4.26 | 3.65~4.41 |
2,5+3,5-DNT/% | ≤1.0 | ≤1.0 |
2,3+3,4-DNT/% | ≤4.0 | ≤4.5 |
MNT/% | ≤0.2 | ≤0.2 |
TNT/% | ≤0.1 | ≤0.1 |
nitrocresol/% | ≤0.15 | ≤0.15 |
表1 80/20DNT产品质量标准主要技术指标(WJ 1898—89)
Table 1 Main technical indicators of 80/20DNT product quality standards
Item | Quality index | |
---|---|---|
Premium grade | First-grade | |
appearance | no black impurities or suspended solids | |
2,4+2,6-DNT/% | ≥95.0 | ≥95.0 |
2,4-/2,6-DNT | 3.76~4.26 | 3.65~4.41 |
2,5+3,5-DNT/% | ≤1.0 | ≤1.0 |
2,3+3,4-DNT/% | ≤4.0 | ≤4.5 |
MNT/% | ≤0.2 | ≤0.2 |
TNT/% | ≤0.1 | ≤0.1 |
nitrocresol/% | ≤0.15 | ≤0.15 |
φ/% | Qorg/(ml/min) | N/S | N/T | T/℃ | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 2 | 1/1 | 2.10 | 75 | 6.03 | 0 | 5.73 | 94.17 | 89.30 | 4.48 | 4.87 |
5 | 0.77 | 99.23 | 94.15 | 4.52 | 5.08 |
表2 釜式搅拌对甲苯二硝化反应的影响
Table 2 Effect of kettle stirring on the dinitration reaction of toluene
φ/% | Qorg/(ml/min) | N/S | N/T | T/℃ | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 2 | 1/1 | 2.10 | 75 | 6.03 | 0 | 5.73 | 94.17 | 89.30 | 4.48 | 4.87 |
5 | 0.77 | 99.23 | 94.15 | 4.52 | 5.08 |
φ/% | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|
7 | 2.07 | 4.5 | 0 | 0.96 | 98.86 | 94.78 | 4.47 | 4.08 |
2.18 | 4.4 | 0 | 0.10 | 99.74 | 95.59 | 4.50 | 4.14 | |
2.26 | 4.3 | 0 | 0.03 | 99.82 | 95.68 | 4.49 | 4.14 | |
2.07 | 4.5 | 5 | 0.10 | 99.73 | 95.57 | 4.49 | 4.16 | |
2.18 | 4.4 | 5 | 0 | 99.85 | 95.68 | 4.50 | 4.17 | |
2.26 | 4.3 | 5 | 0 | 99.83 | 95.67 | 4.50 | 4.17 | |
10 | 2.05 | 4.3 | 0 | 9.83 | 90.15 | 86.89 | 4.27 | 3.26 |
2.26 | 4.1 | 0 | 2.03 | 97.96 | 94.30 | 4.35 | 3.66 | |
2.05 | 4.3 | 5 | 6.71 | 93.26 | 89.89 | 4.26 | 3.38 | |
2.26 | 4.1 | 5 | 0 | 99.98 | 96.14 | 4.38 | 3.84 | |
12 | 2.09 | 4.7 | 0 | 21.02 | 78.92 | 76.46 | 4.07 | 2.46 |
2.17 | 4.5 | 0 | 16.68 | 83.31 | 80.60 | 4.12 | 2.71 | |
2.25 | 4.3 | 0 | 10.31 | 89.69 | 86.73 | 4.17 | 2.96 | |
2.09 | 4.7 | 5 | 7.76 | 92.02 | 89.08 | 4.11 | 2.94 | |
2.17 | 4.5 | 5 | 3.62 | 96.38 | 93.17 | 4.20 | 3.21 | |
2.25 | 4.3 | 5 | 1.31 | 98.69 | 95.31 | 4.26 | 3.38 | |
14 | 2.08 | 4.5 | 0 | 38.66 | 61.33 | 59.52 | 3.95 | 1.81 |
2.16 | 4.4 | 0 | 38.85 | 61.15 | 59.33 | 3.95 | 1.82 | |
2.26 | 4.3 | 0 | 34.80 | 65.20 | 63.23 | 3.97 | 1.96 | |
2.08 | 4.5 | 5 | 22.22 | 77.78 | 75.49 | 3.90 | 2.29 | |
2.16 | 4.4 | 5 | 19.14 | 80.86 | 78.45 | 3.92 | 2.40 | |
2.26 | 4.3 | 5 | 15.25 | 84.75 | 82.15 | 4.01 | 2.60 |
表3 不同混酸含水量时硝酸与甲苯的摩尔比对甲苯二硝化反应过程的影响
Table 3 Effect of the molar ratio of nitric acid to toluene on the process of toluene dinitration reaction (N/S=1/2, T=75℃)
φ/% | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|
7 | 2.07 | 4.5 | 0 | 0.96 | 98.86 | 94.78 | 4.47 | 4.08 |
2.18 | 4.4 | 0 | 0.10 | 99.74 | 95.59 | 4.50 | 4.14 | |
2.26 | 4.3 | 0 | 0.03 | 99.82 | 95.68 | 4.49 | 4.14 | |
2.07 | 4.5 | 5 | 0.10 | 99.73 | 95.57 | 4.49 | 4.16 | |
2.18 | 4.4 | 5 | 0 | 99.85 | 95.68 | 4.50 | 4.17 | |
2.26 | 4.3 | 5 | 0 | 99.83 | 95.67 | 4.50 | 4.17 | |
10 | 2.05 | 4.3 | 0 | 9.83 | 90.15 | 86.89 | 4.27 | 3.26 |
2.26 | 4.1 | 0 | 2.03 | 97.96 | 94.30 | 4.35 | 3.66 | |
2.05 | 4.3 | 5 | 6.71 | 93.26 | 89.89 | 4.26 | 3.38 | |
2.26 | 4.1 | 5 | 0 | 99.98 | 96.14 | 4.38 | 3.84 | |
12 | 2.09 | 4.7 | 0 | 21.02 | 78.92 | 76.46 | 4.07 | 2.46 |
2.17 | 4.5 | 0 | 16.68 | 83.31 | 80.60 | 4.12 | 2.71 | |
2.25 | 4.3 | 0 | 10.31 | 89.69 | 86.73 | 4.17 | 2.96 | |
2.09 | 4.7 | 5 | 7.76 | 92.02 | 89.08 | 4.11 | 2.94 | |
2.17 | 4.5 | 5 | 3.62 | 96.38 | 93.17 | 4.20 | 3.21 | |
2.25 | 4.3 | 5 | 1.31 | 98.69 | 95.31 | 4.26 | 3.38 | |
14 | 2.08 | 4.5 | 0 | 38.66 | 61.33 | 59.52 | 3.95 | 1.81 |
2.16 | 4.4 | 0 | 38.85 | 61.15 | 59.33 | 3.95 | 1.82 | |
2.26 | 4.3 | 0 | 34.80 | 65.20 | 63.23 | 3.97 | 1.96 | |
2.08 | 4.5 | 5 | 22.22 | 77.78 | 75.49 | 3.90 | 2.29 | |
2.16 | 4.4 | 5 | 19.14 | 80.86 | 78.45 | 3.92 | 2.40 | |
2.26 | 4.3 | 5 | 15.25 | 84.75 | 82.15 | 4.01 | 2.60 |
N/S | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|
1∶3 | 2.05 | 4.8 | 0 | 14.96 | 85.03 | 82.22 | 4.13 | 2.81 |
2.17 | 4.6 | 0 | 11.99 | 88.01 | 85.06 | 4.17 | 2.95 | |
2.23 | 4.5 | 0 | 8.86 | 91.14 | 88.03 | 4.17 | 3.11 | |
2.05 | 4.8 | 5 | 1.42 | 98.58 | 95.17 | 4.22 | 3.42 | |
2.17 | 4.6 | 5 | 0.68 | 99.31 | 95.79 | 4.23 | 3.52 | |
2.23 | 4.5 | 5 | 0.19 | 99.79 | 96.25 | 4.25 | 3.55 | |
1∶4 | 2.05 | 4.9 | 0 | 8.50 | 91.47 | 88.56 | 4.26 | 2.92 |
2.17 | 4.7 | 0 | 5.64 | 94.35 | 91.16 | 4.22 | 3.19 | |
2.23 | 4.5 | 0 | 2.57 | 97.41 | 93.94 | 4.19 | 3.47 | |
2.05 | 4.9 | 5 | 2.56 | 97.42 | 94.12 | 4.21 | 3.30 | |
2.17 | 4.7 | 5 | 0.05 | 99.93 | 96.29 | 4.20 | 3.65 | |
2.23 | 4.5 | 5 | 0.0 | 99.99 | 96.43 | 4.25 | 3.57 |
表4 不同混酸N/S下硝酸与甲苯的摩尔比对甲苯二硝化反应过程的影响
Table 4 Effect of the molar ratio of nitric acid to toluene on the process of toluene dinitration reaction (φ=14%, T=75℃)
N/S | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|
1∶3 | 2.05 | 4.8 | 0 | 14.96 | 85.03 | 82.22 | 4.13 | 2.81 |
2.17 | 4.6 | 0 | 11.99 | 88.01 | 85.06 | 4.17 | 2.95 | |
2.23 | 4.5 | 0 | 8.86 | 91.14 | 88.03 | 4.17 | 3.11 | |
2.05 | 4.8 | 5 | 1.42 | 98.58 | 95.17 | 4.22 | 3.42 | |
2.17 | 4.6 | 5 | 0.68 | 99.31 | 95.79 | 4.23 | 3.52 | |
2.23 | 4.5 | 5 | 0.19 | 99.79 | 96.25 | 4.25 | 3.55 | |
1∶4 | 2.05 | 4.9 | 0 | 8.50 | 91.47 | 88.56 | 4.26 | 2.92 |
2.17 | 4.7 | 0 | 5.64 | 94.35 | 91.16 | 4.22 | 3.19 | |
2.23 | 4.5 | 0 | 2.57 | 97.41 | 93.94 | 4.19 | 3.47 | |
2.05 | 4.9 | 5 | 2.56 | 97.42 | 94.12 | 4.21 | 3.30 | |
2.17 | 4.7 | 5 | 0.05 | 99.93 | 96.29 | 4.20 | 3.65 | |
2.23 | 4.5 | 5 | 0.0 | 99.99 | 96.43 | 4.25 | 3.57 |
图5 不同硝硫与甲苯的摩尔比对甲苯二硝化绝热温升的影响
Fig.5 Effect of the molar ratio of nitric acid to toluene on the adiabatic temperature rise of toluene dinitration reactio
φ/% | N/S | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|---|
14 | 1/4 | 2.17 | 4.7 | 0 | 3.72 | 95.88 | 92.55 | 4.16 | 3.33 |
2.17 | 4.7 | 10 | 0.16 | 99.61 | 96.08 | 4.21 | 3.53 |
表5 甲苯绝热二硝化实验结果
Table 5 Experimental result of toluene adiabatic dinitration reaction(φ=14%, Qorg=3.5 ml/min, Qaq=28.5 ml/min, N/S=1/4, feed at room temperature)
φ/% | N/S | N/T | τ/min | tstir/min | MNT/% | DNT/% | 2,4-&2,6-DNT/% | 2,4-/2,6-DNT | Other DNT/% |
---|---|---|---|---|---|---|---|---|---|
14 | 1/4 | 2.17 | 4.7 | 0 | 3.72 | 95.88 | 92.55 | 4.16 | 3.33 |
2.17 | 4.7 | 10 | 0.16 | 99.61 | 96.08 | 4.21 | 3.53 |
1 | Auer E. Supported iridium catalysts—a novel catalytic system for the synthesis of toluenediamine[J]. Catalysis Today, 2001, 65(1): 31-37. |
2 | Neri G, Rizzo G, Milone C, et al. Microstructural characterization of doped-Pd/C catalysts for the selective hydrogenation of 2, 4-dinitrotoluene to arylhydroxylamines[J]. Applied Catalysis A: General, 2003, 249(2): 303-311. |
3 | Hajdu V, Varga M, Muránszky G, et al. Development of magnetic, ferrite supported palladium catalysts for 2, 4-dinitrotoluene hydrogenation[J]. Materials Today Chemistry, 2021, 20: 100470. |
4 | Hajdu V, Muránszky G, Hashimoto M, et al. Combustion method combined with sonochemical step for synthesis of maghemite-supported catalysts for the hydrogenation of 2, 4-dinitrotoluene[J]. Catalysis Communications, 2021, 159: 106342. |
5 | Jakab-Nácsa A, Garami A, Fiser B, et al. Towards machine learning in heterogeneous catalysis—a case study of 2,4-dinitrotoluene hydrogenation[J]. International Journal of Molecular Sciences, 2023, 24(14): 11461. |
6 | 陈利平, 陈网桦, 彭金华, 等. 二硝基甲苯硝化反应的热危险性分析[J]. 含能材料, 2010, 18(6): 706-710. |
Chen L P, Chen W H, Peng J H, et al. Thermal hazard analysis of dinitrotoluene nitration[J]. Chinese Journal of Energetic Materials, 2010, 18(6): 706-710. | |
7 | Kulkarni A A. Continuous flow nitration in miniaturized devices[J]. Beilstein Journal of Organic Chemistry, 2014, 10: 405-424. |
8 | 汪嘉欣, 潘勇, 熊欣怡, 等. 甲苯一步催化硝化制备二硝基甲苯反应过程及危险性[J]. 化工进展, 2023, 42(7): 3420-3430. |
Wang J X, Pan Y, Xiong X Y, et al. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. | |
9 | Guggenheim T L. Chemistry, Process Design, and Safety for the Nitration Industry[M]. Washington DC: American chemical Society, 2013. |
10 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
11 | 陈光文, 赵玉潮, 袁权. 微尺度下液-液流动与传质特性的研究进展[J]. 化工学报, 2010, 61(7): 1627-1635. |
Chen G W, Zhao Y C, Yuan Q. Advances in flow hydrodynamic and mass transfer characteristics of liquid phase in microscale[J]. CIESC Journal, 2010, 61(7): 1627-1635. | |
12 | 骆广生, 王凯, 王玉军, 等. 微化工系统的原理和应用[J]. 化工进展, 2011, 30(8): 1637-1642. |
Luo G S, Wang K, Wang Y J, et al. Principles and applications of micro-structured chemical system[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1637-1642. | |
13 | 陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1): 63-75. |
Chen G W, Zhao Y C, Yue J, et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1): 63-75. | |
14 | 骆广生, 王凯, 吕阳成, 等. 微尺度下非均相反应的研究进展[J]. 化工学报, 2013, 64(1): 165-172. |
Luo G S, Wang K, Lü Y C, et al. Research and development of micro-scale multiphase reaction processes[J]. CIESC Journal, 2013, 64(1): 165-172. | |
15 | Jensen K F. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
16 | 李光晓, 刘塞尔, 苏远海. 微尺度内液-液传质及反应过程强化的研究进展[J]. 化工学报, 2021, 72(1): 452-467. |
Li G X, Liu S E, Su Y H. Research progress on micro-scale internal liquid-liquid mass transfer and reaction process enhancement[J]. CIESC Journal, 2021, 72(1): 452-467. | |
17 | Dummann G, Quittmann U, Gröschel L, et al. The capillary-microreactor: a new reactor concept for the intensification of heat and mass transfer in liquid–liquid reactions[J]. Catalysis Today, 2003, 79/80: 433-439. |
18 | Su Y H, Zhao Y C, Jiao F J, et al. The intensification of rapid reactions for multiphase systems in a microchannel reactor by packing microparticles[J]. AIChE Journal, 2011, 57(6): 1409-1418. |
19 | Yu Z Q, Zhou P C, Liu J M, et al. Continuous-flow process for selective mononitration of 1-methyl-4-(methylsulfonyl)benzene[J]. Organic Process Research & Development, 2016, 20(2): 199-203. |
20 | Yan Z F, Tian J X, Du C C, et al. Reaction kinetics determination based on microfluidic technology[J]. Chinese Journal of Chemical Engineering, 2022, 41: 49-72. |
21 | 刘卫孝, 刘洋, 高福磊, 等. 微反应器在含能材料合成与品质提升中的应用[J]. 化工进展, 2023, 42(7): 3349-3364. |
Liu W X, Liu Y, Gao F L, et al. Application of microreactor in synthesis and quality improvement of energetic materials[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3349-3364. | |
22 | Jin N, Song Y B, Yue J, et al. Heterogeneous nitration of nitrobenzene in microreactors: process optimization and modelling[J]. Chemical Engineering Science, 2023, 281: 119198. |
23 | Guo S, Zhan L W, Li B D. Nitration of o-xylene in the microreactor: reaction kinetics and process intensification[J]. Chemical Engineering Journal, 2023, 468: 143468. |
24 | Wen Z H, Jiao F J, Yang M, et al. Process development and scale-up of the continuous flow nitration of trifluoromethoxybenzene[J]. Organic Process Research & Development, 2017, 21(11): 1843-1850. |
25 | Russo D, Tomaiuolo G, Andreozzi R, et al. Heterogeneous benzaldehyde nitration in batch and continuous flow microreactor[J]. Chemical Engineering Journal, 2019, 377: 120346. |
26 | Hussain A, Sharma M, Patil S, et al. Design and scale-up of continuous di-nitration reaction using pinched tube flow reactor[J]. Journal of Flow Chemistry, 2021, 11(3): 611-624. |
27 | 侯跃辉, 刘璇, 廉应江, 等. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
Hou Y H, Liu X, Lian Y J, et al. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor[J]. CIESC Journal, 2022, 73(8): 3597-3607. | |
28 | Hou Z T, Chen H F, Mao J Y, et al. Novel atomization-assisted phosgenation for TDI synthesis from TDA: a theoretical study on single droplet reactivity[J]. Chemical Engineering Science, 2023, 280: 119018. |
29 | Zaldivar J M, Molga E, Alós M A, et al. Aromatic nitrations by mixed acid. Slow liquid-liquid reaction regime[J]. Chemical Engineering and Processing: Process Intensification, 1995, 34(6): 543-559. |
30 | Russo D, Marotta R, Commodo M, et al. Ternary HNO3-H2SO4-H2O mixtures: a simplified approach for the calculation of the equilibrium composition[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1696-1704. |
31 | Li S F, Zhang X L, Ji D S, et al. Continuous flow nitration of 3-[2-chloro-4-(trifluoromethyl) phenoxy]benzoic acid and its chemical kinetics within droplet-based microreactors[J]. Chemical Engineering Science, 2022, 255: 117657. |
[1] | 马韶阳, 徐涵卓, 张亮亮, 孙宝昌, 邹海魁, 罗勇, 初广文. 液-液非均相反应器研究进展[J]. 化工学报, 2024, 75(3): 727-742. |
[2] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
[3] | 成文凯, 颜金钰, 王嘉骏, 冯连芳. 卧式捏合反应器及其在聚合工业中的研究进展[J]. 化工学报, 2024, 75(3): 768-781. |
[4] | 宋仕容, 刘宏臣, 米晓天, 许超, 杨梅, 尧超群. 同轴微通道内管结构对液滴生成的影响规律研究[J]. 化工学报, 2024, 75(2): 566-574. |
[5] | 王俊男, 何呈祥, 王忠东, 朱春英, 马友光, 付涛涛. T型微混合器内均相混合的数值模拟[J]. 化工学报, 2024, 75(1): 242-254. |
[6] | 赵若晗, 黄蒙蒙, 朱春英, 付涛涛, 高习群, 马友光. 缩口T型微通道内纳米流体吸收CO2的流动与传质研究[J]. 化工学报, 2024, 75(1): 221-230. |
[7] | 李亚婷, 王忠东, 董艳鹏, 朱春英, 马友光, 付涛涛. 微通道中毛细流动及其工程应用的研究进展[J]. 化工学报, 2024, 75(1): 159-170. |
[8] | 崔怡洲, 李成祥, 翟霖晓, 刘束玉, 石孝刚, 高金森, 蓝兴英. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2024, 75(1): 197-210. |
[9] | 王婷, 王忠东, 项星宇, 何呈祥, 朱春英, 马友光, 付涛涛. 微反应器内环酯类锂电池添加剂合成研究进展[J]. 化工学报, 2024, 75(1): 95-109. |
[10] | 郑雨婷, 方冠东, 张梦波, 张浩淼, 王靖岱, 阳永荣. 微化工精馏分离技术研究进展[J]. 化工学报, 2024, 75(1): 47-59. |
[11] | 温唯谷, 袁志宏, 王凯, 骆广生. 微分散液滴的光纤检测研究[J]. 化工学报, 2024, 75(1): 211-220. |
[12] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[13] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[14] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[15] | 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 898
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 264
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||