化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1830-1842.DOI: 10.11949/0438-1157.20231121
李怡菲1,2(), 董新宇2, 王为术1, 刘璐2(), 赵一璠2
收稿日期:
2023-10-31
修回日期:
2023-12-17
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
刘璐
作者简介:
李怡菲(2001—),女,硕士研究生,16634862916@163.com
基金资助:
Yifei LI1,2(), Xinyu DONG2, Weishu WANG1, Lu LIU2(), Yifan ZHAO2
Received:
2023-10-31
Revised:
2023-12-17
Online:
2024-05-25
Published:
2024-06-25
Contact:
Lu LIU
摘要:
针对高度集成化和微型模块化高热载荷电子元器件温度控制问题,基于CFD两相求解器,采用数值实验研究了微肋板表面干冰升华喷雾冷却传热特性。结果表明微肋板表面和热源上表面的温度、传热系数、冷却热通量基本呈环形分布,越靠近中心干冰颗粒越多,温度越低,冷却性能越高。热源上表面中心线上中心温度最低,并且其冷却热通量和传热系数呈M形分布。当喷嘴入口速度和干冰占比增大时,模拟热源表面的传热系数和冷却热通量也随之增大,而温度则整体降低。在喷嘴入口速度为20 m/s,干冰占比为40%时得到相对最优的冷却热通量170 W/cm2和相对最优的传热系数12500 W/(m2·K)。
中图分类号:
李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842.
Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate[J]. CIESC Journal, 2024, 75(5): 1830-1842.
材料参数 | CO2 | 干冰 | 铜(模拟热源) | 保温材料 |
---|---|---|---|---|
密度/(kg/m3) | 1.7878 | 1562 | 8978 | 1818 |
热导率/(W/(m·K)) | 0.0145 | 0.086 | 387.6 | 0.288 |
比热容/(J/(kg·K)) | 54.55 | 381 | 800 |
表1 材料参数设置
Table 1 Material parameter settings
材料参数 | CO2 | 干冰 | 铜(模拟热源) | 保温材料 |
---|---|---|---|---|
密度/(kg/m3) | 1.7878 | 1562 | 8978 | 1818 |
热导率/(W/(m·K)) | 0.0145 | 0.086 | 387.6 | 0.288 |
比热容/(J/(kg·K)) | 54.55 | 381 | 800 |
图10 不同喷射条件下热源上表面温度、冷却热通量和传热系数分布规律
Fig.10 Distribution laws of temperature, cooling heat flux and heat transfer coefficient on heat source upper surface under different injection conditions
图11 不同喷射条件下微肋板上表面温度、冷却热通量和传热系数分布
Fig.11 Distribution of upper surface temperature, cooling heat flux and heat transfer coefficient on micro-ribbed plate under different injection conditions
图13 不同喷嘴进口流速下模拟热源微肋板上表面平均温度和传热系数变化规律
Fig.13 Changes in average surface temperature and heat transfer coefficient on simulated heat source micro-ribbed plates under different nozzle inlet flow rates
1 | 王军. 阵列喷雾冷却换热特性及表面温度均匀性实验研究[D]. 南京: 南京理工大学, 2016. |
Wang J. Experimental research on heat transfer performance and surface temperature uniformity in array spray cooling[D]. Nanjing: Nanjing University of Science and Technology, 2016. | |
2 | 袁修干. 高性能军用机环境控制系统研究发展趋势的探讨[J]. 航空学报, 1999, 20(S1): 2-4. |
Yuan X G. Discussion on the research and development trend of high performance military aircraft environmental control system[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(S1): 2-4. | |
3 | Rvbicki J R, Mudawar I. Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays[J]. International Journal of Heat and Mass Transfer, 2006, 49(1-2): 5-16. |
4 | 孙少鹏. 高热通量电子元件喷雾相变冷却系统的研究[D]. 重庆: 重庆大学, 2010. |
Sun S P. Research on spray cooling system for electronics with high heat flux[D]. Chongqing: Chongqing University, 2010. | |
5 | 周乐平, 唐大为, 杜小泽, 等. 大功率激光武器及其冷却系统[J]. 激光武器, 2007, 44 (8): 34-38. |
Zhou L P, Tang D W, Du X Z, et al. High-power laser weapon and its cooling system[J]. Laser Weapon, 2007, 44(8): 34-38. | |
6 | Paris M R, Chow L C, Mathefdey E T. Surface roughness and its effects on the heat transfer mechanism in spray cooling[J]. Experiment Heat Transfer, 1992(114): 211-219. |
7 | Visaria M, Mudawar I. Application of two-phase spray cooling for thermal management of electronic devices[C]//2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Orlando, FL, USA. IEEE, 2008: 275-283. |
8 | 姚寿广, 马哲树, 罗林, 等. 电子电器设备中高效热管散热技术的研究现状及发展[J]. 华东船舶工业学院学报(自然科学版), 2003, 17(4): 9-12. |
Yao S G, Ma Z S, Luo L, et al. Improvement of heat pipe technique for high heat flux electronics cooling[J]. Journal of East China Shipbuilding Institute (Natural Science Edition), 2003, 17(4): 9-12. | |
9 | 纪绍斌, 李生生. 热管技术的应用与发展[J]. 山西建筑, 2005, 31(13): 140-141. |
Ji S B, Li S S. Application and development of heat pipes[J]. Shanxi Architecture, 2005, 31(13): 140-141. | |
10 | Thiangtham P, Keepaiboon C, Kiatpachai P, et al. An experimental study on two-phase flow patterns and heat transfer characteristics during boiling of R134a flowing through a multi-microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2016, 98: 390-400. |
11 | 亓帅兵, 谢雪松, 郭海霞, 等. 基于微通道相变散热器的热控系统研究[J]. 电子设计工程, 2019, 27(18): 1-5. |
Qi S B, Xie X S, Guo H X, et al. Research on thermal control system based on microchannel phase change radiator[J]. Electronic Design Engineering, 2019, 27(18): 1-5. | |
12 | 季爱林, 钟剑锋, 帅立国. 大热通量电子设备的散热方法[J]. 电子机械工程, 2013, 29(6): 30-35. |
Ji A L, Zhong J F, Shuai L G. Cooling measures of high flux electronic equipment[J]. Electro-Mechanical Engineering, 2013, 29(6): 30-35. | |
13 | Smakulski P, Pietrowicz S. A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques[J]. Applied Thermal Engineering, 2016, 104: 636-646. |
14 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
15 | 刘一兵, 黄新民, 刘安宁, 等. 基于电子散热新技术的研究[J]. 低温与超导, 2008, 36(3): 54-57, 61. |
Liu Y B, Huang X M, Liu A N, et al. Research based on new heat release technology of electron[J]. Cryogenics and Superconductivity, 2008, 36(3): 54-57, 61. | |
16 | 余勇胜. 氨喷雾相变冷却传热特性研究[D]. 重庆: 重庆大学, 2011. |
Yu Y S. Performance and heat transfer characteristics of evaporative spray cooling with ammonia[D]. Chongqing: Chongqing University, 2011. | |
17 | Bostanci H, Saarloos B A, Rini D P, et al. Spray cooling with ammonia on micro-structured surfaces[C]//2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Orlando, FL, USA: IEEE, 2008: 290-295. |
18 | Yang J, Chow L C, Pais M R. Nucleate boiling heat transfer in spray cooling[J]. Journal of Heat Transfer, 1996, 118(3): 668-671. |
19 | Mudawar I, Estes K A. Optimizing and predicting CHF in spray cooling of a square surface[J]. Journal of Heat Transfer, 1996, 118(3): 672-679. |
20 | Lin L C, Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop[J]. International Journal of Heat and Mass Transfer, 2003, 46(20): 3737-3746. |
21 | Pais M, Tilton D, Chow L, et al. High-heat-flux, low-superheat evaporative spray cooling[C]//Proceedings of the 27th Aerospace Sciences Meeting. Reno, NV, USA. Reston, Virigina: AIAA, 1989: AIAA1989-241. |
22 | Chow L, Mahefkey E. High power density evaporative cooling[C]//Proceedings of the 22nd Thermophysics Conference. Honolulu, HI, USA. Reston, Virigina: AIAA, 1987: AIAA1987-1536. |
23 | Hsieh C C, Yao S C. Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces[J]. International Journal of Heat and Mass Transfer, 2006, 49(5/6): 962-974. |
24 | Silk E A. Investigation of enhanced surface spray cooling[D]. Park: University of Maryland, 2006. |
25 | Mudawar I. Assessment of high-heat-flux thermal management schemes[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 122-141. |
26 | Mudawar I, Bowers M B. Ultra-high critical heat flux (CHF) for subcooled water flow boiling (Ⅰ): CHF data and parametric effects for small diameter tubes[J]. International Journal of Heat and Mass Transfer, 1999, 42(8): 1405-1428. |
27 | Qiu Y H, Liu Z H. Critical heat flux of steady boiling for saturated liquids jet impinging on the stagnation zone[J]. International Journal of Heat and Mass Transfer, 2005, 48(21/22): 4590-4597. |
28 | 周年勇, 冯浩, 许泓烨, 等. R134a闭式喷雾冷却传热性能实验研究[J]. 制冷学报, 2021, 42(3): 152-158. |
Zhou N Y, Feng H, Xu H Y, et al. Experimental study on heat transfer performance of closed-loop spray cooling using R134a[J]. Journal of Refrigeration, 2021, 42(3): 152-158. | |
29 | Kim D, Lee J. Experimental investigation of CO2 dry-ice assisted jet impingement cooling[J]. Applied Thermal Engineering, 2016, 107: 927-935. |
30 | Panão M R O, Costa J J, Bernardo M R F. Thermal assessment of sublimation cooling with dry-ice sprays[J]. International Journal of Heat and Mass Transfer, 2018, 118: 518-526. |
31 | Li J X, Li Y Z, Li E H, et al. Experimental investigation of spray-sublimation cooling system with CO2 dry-ice particles[J]. Applied Thermal Engineering, 2020, 174: 115285. |
32 | Coursey J S, Kim J, Kiger K T. Spray cooling of high aspect ratio open microchannels[C]//Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems. San Diego, 2006: 188-195. |
33 | Pautsch A, Shedd T. Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72[J]. International Journal of Heat and Mass Transfer, 2005, 48(15): 3167-3175. |
34 | Shedd T, Pautsch A. Spray impingement cooling with single- and multiple-nozzle arrays (Part Ⅱ): Visualization and empirical models[J]. International Journal of Heat and Mass Transfer, 2005, 48(15): 3176-3184. |
35 | Estes K A, Mudawar I. Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces[J]. International Journal of Heat and Mass Transfer, 1995, 38(16): 2985-2996. |
36 | Visaria M, Mudawar I. A systematic approachto predicting critical heat flux for inclined sprays[J]. Journal of Electronic Packaging, 2007, 129(4): 452-459. |
[1] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[2] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[3] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[4] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[5] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[6] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[7] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[8] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
[9] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
[10] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[11] | 徐百平, 梁瑞凤, 喻慧文, 吴桂群, 肖书平. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
[12] | 邓志诚, 许世峰, 王淇冬, 王家瑞, 王斯民. 浸没燃烧处理高盐高化学需氧量废水过程与能耗分析[J]. 化工学报, 2024, 75(3): 1000-1008. |
[13] | 屠楠, 刘晓群, 王驰宇, 方嘉宾. 连续进出料鼓泡流化床停留时间分布的相似准则研究[J]. 化工学报, 2024, 75(2): 543-552. |
[14] | 赵碧丹, 代伊杨, 王军武, 张永民. CFD-DEM-IBM方法探究流化床倾斜挡板内构件受力特性[J]. 化工学报, 2024, 75(1): 255-267. |
[15] | 周尧, 杨小平, 倪一程, 刘继平, 魏进家, 严俊杰. 应用于新型环路热管的两相引射器数值模拟[J]. 化工学报, 2024, 75(1): 268-278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||