1 |
van Erp R, Soleimanzadeh R, Nela L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211-216.
|
2 |
Kanduri A, Rahmani A M, Liljeberg P, et al. A perspective on dark silicon[M]//Rahmani A, Liljeberg P, Hemani A, et al. The Dark Side of Silicon. Cham: Springer, 2017: 3-20.
|
3 |
Hardavellas N, Ferdman M, Falsafi B, et al. Toward dark silicon in servers[J]. IEEE Micro, 2011, 31(4): 6-15.
|
4 |
Garimella S V, Fleischer A S, Murthy J Y, et al. Thermal challenges in next-generation electronic systems[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(4): 801-815.
|
5 |
Fan Y, Winkel C, Kulkarni D, et al. Analytical design methodology for liquid based cooling solution for high TDP CPUs[C]//2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). San Diego, CA, USA:IEEE, 2018: 582-586.
|
6 |
Sun Y F, Agostini N B, Dong S, et al. Summarizing CPU and GPU design trends with product data[EB/OL]. 2019, arXiv: .
|
7 |
Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.
|
8 |
Brunschwiler T, Michel B, Rothuizen H, et al. Interlayer cooling potential in vertically integrated packages[J]. Microsystem Technologies, 2009, 15(1): 57-74.
|
9 |
Harpole G M, Eninger J E. Micro-channel heat exchanger optimization[C]//1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. Phoenix, AZ, USA: IEEE, 2002: 59-63.
|
10 |
Zhang X, JI Z, Wang J, et al. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices[J]. Applied Thermal Engineering, 2023, 235: 121294.
|
11 |
Sarkas S, Gupta R, Roy T, et al. Review of jet impingement cooling of electronic devices: emerging role of surface engineering[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123888.
|
12 |
杨宇驰, 吕佩珏, 杜建宇, 等. 大面积处理芯片嵌入式微流体冷却技术[J]. 微电子学与计算机, 2023, 40(1): 105-123.
|
|
Yang Y C, Lyu P J, Du J Y, et al. Embedded microfluidic cooling technology for large-area processing chips[J]. Microelectronics & Computer, 2023, 40(1): 105-123.
|
13 |
Brunschwiler T, Rothuizen H, Fabbri M, et al. Direct liquid jet-impingment cooling with micron-sized nozzle array and distributed return architecture[C]// Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. IEEE, 2006: 196-203.
|
14 |
Luo Y, Zhang J Z, Li W. A comparative numerical study on two-phase boiling fluid flow and heat transfer in the microchannel heat sink with different manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119864.
|
15 |
Lin Y H, Luo Y, Li W, et al. Single-phase and two-phase flow and heat transfer in microchannel heat sink with various manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2021, 171:121118.
|
16 |
Tong J C K, Sparrow E M, Abraham J P. Geometric strategies for attainment of identical outflows through all of the exit ports of a distribution manifold in a manifold system[J]. Applied Thermal Engineering, 2009, 29(17): 3552-3560.
|
17 |
Sharma C S, Schlottig G, Brunschwiler T, et al. A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 684-694.
|
18 |
Zhang J, An J, Xin G, et al. Thermal and hydrodynamic characteristics of single-phase flow in manifold microchannels with countercurrent regions[J]. International Journal of Heat and Mass Transfer, 2023, 211: 124265.
|
19 |
Chen C, Wang X, Yuan B, et al. Investigation of flow and heat transfer performance of the manifold microchannel with different manifold arrangements[J]. Case Studies in Thermal Engineering, 2022, 34: 102073.
|
20 |
Tang W Y, Li J Y, Wu Z, et al. A numerical investigation of the thermal-hydraulic performance during subcooled flow boiling in MMCs with different manifolds[J]. Applied Thermal Engineering, 2024, 236: 121820.
|
21 |
Yang M, Cao B Y. Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels[J]. Applied Thermal Engineering, 2019, 159: 113896.
|
22 |
Pan Y H, Zhao R, Fan X H, et al. Study on the effect of varying channel aspect ratio on heat transfer performance of manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 163(1):120461-120461.
|
23 |
Chen C W, Li F, Wang X Y, et al. Improvement of flow and heat transfer performance of manifold microchannel with porous fins[J]. Applied Thermal Engineering, 2022, 206: 118129.
|
24 |
Yuan Y, Chen L, Zhang C D, et al. Numerical investigation of flow boiling heat transfer in manifold microchannels[J]. Applied Thermal Engineering, 2022, 217: 119268.
|
25 |
Chen H R, Han Y, Tang G Y. Numerical investigation of the optimization on manifold microchannel heat sink towards the water-cooling limit[C]//2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC). Singapore:IEEE, 2021: 513-518.
|
26 |
Pan Y H, Zhao R, Nian Y L, et al. Numerical study on heat transfer characteristics of a pin-fin staggered manifold microchannel heat sink[J]. Applied Thermal Engineering, 2023, 219: 119436.
|
27 |
Han Y, Lau B L, Tang G, la et. Si-based hybrid microcooler with multiple drainage microtrenches for high heat flux cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(1): 50-57.
|
28 |
Hazra S, Wei T W, Lin Y, et al. Parametric design analysis of a multi-level 3D manifolded microchannel cooler via reduced order numerical modeling[J]. International Journal of Heat and Mass Transfer, 2022, 197: 123356.
|
29 |
Gilmore N, Hassanzadeh-Barforoushi A, Timchenko V, et al. Manifold configurations for uniform flow via topology optimisation and flow visualisation[J]. Applied Thermal Engineering, 2021, 183: 116227.
|
30 |
Tang W, Sun L, Liu H, et al. Improvement of flow distribution and heat transfer performance of a self-similarity heat sink with a modification to its structure[J]. Applied Thermal Engineering, 2017, 121: 163-171.
|
31 |
Piazza A, Hazra S, Jung K W, et al. Considerations and challenges for large area embedded micro-channels with 3D manifold in high heat flux power electronics applications[C]//2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA. IEEE, 2020: 77-82.
|