化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1777-1786.DOI: 10.11949/0438-1157.20231228
刘帆1(), 张芫通2, 陶成1, 胡成玉2, 杨小平2(
), 魏进家2
收稿日期:
2023-11-27
修回日期:
2024-02-22
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
杨小平
作者简介:
刘帆(1982—),男,硕士研究生,高级工程师,liu.fan@zte.com.cn
基金资助:
Fan LIU1(), Yuantong ZHANG2, Cheng TAO1, Chengyu HU2, Xiaoping YANG2(
), Jinjia WEI2
Received:
2023-11-27
Revised:
2024-02-22
Online:
2024-05-25
Published:
2024-06-25
Contact:
Xiaoping YANG
摘要:
随着信息技术进步,芯片向大面积、高功率方向发展,对热管理提出了严峻挑战。微通道液冷能够解决高功率芯片散热难题,但传统平直微通道热沉流阻大、温度均匀性差。提出了一种耦合歧管式进出液结构、分布式射流和微针翅的新型歧管式微通道散热器,在平均热通量高于330 W/cm2、总功率达到2500 W时,芯片平均温度低于70℃,实现了高效散热。通过数值模拟发现:降低散热器射流腔高度可显著强化传热,但整体压降也随之陡升,存在一个最佳射流腔高度;散热器底板的微针翅尺寸及其与射流腔的相对尺寸是新型歧管式微通道散热器的重要结构参数,微针翅的存在并不是绝对有益于传热强化。定义了微针翅与射流腔之间相对高度的无量纲参数——翅占比,存在临界翅占比使得阻碍效应和强化效应相抵消,当翅占比高于这一临界值时才能达到强化换热效果。本研究为新型歧管式微通道散热器的设计提供了指导。
中图分类号:
刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786.
Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling[J]. CIESC Journal, 2024, 75(5): 1777-1786.
参数 | 数值模拟参数值 | 对比实验参数值 |
---|---|---|
芯片面积/mm2 | 2.5×3 | 2.5×3 |
总功率/W | 2000~2500 | 2500 |
工质 | 去离子水 | 去离子水 |
入口温度Tin/℃ | 25 | 25 |
入口流量 Gin/(L/min) | 1~6 | 1~6 |
流入流出分液板厚hn/mm | 2 | 2 |
微针翅尺寸 | ||
边长dpin(长、宽)= 间隙wpin/μm | 100~600 | 200 |
高度hpin/μm | 200~1200 | 600 |
射流腔尺寸 | ||
射流孔规格 | 5×7 | 5×7 |
射流孔直径/mm | 2 | 2 |
排液孔宽度/mm | 2.5 | 2.5 |
射流腔高度hjet/μm | 200~2400 | 1000 |
歧管层尺寸 | ||
流道高度 hc/mm | 2 | 2 |
表1 新型歧管式微通道散热器数值模拟和实验测试边界条件
Table 1 Boundary conditions of numerical simulation and experimental test of novel manifold microchannel heat sink
参数 | 数值模拟参数值 | 对比实验参数值 |
---|---|---|
芯片面积/mm2 | 2.5×3 | 2.5×3 |
总功率/W | 2000~2500 | 2500 |
工质 | 去离子水 | 去离子水 |
入口温度Tin/℃ | 25 | 25 |
入口流量 Gin/(L/min) | 1~6 | 1~6 |
流入流出分液板厚hn/mm | 2 | 2 |
微针翅尺寸 | ||
边长dpin(长、宽)= 间隙wpin/μm | 100~600 | 200 |
高度hpin/μm | 200~1200 | 600 |
射流腔尺寸 | ||
射流孔规格 | 5×7 | 5×7 |
射流孔直径/mm | 2 | 2 |
排液孔宽度/mm | 2.5 | 2.5 |
射流腔高度hjet/μm | 200~2400 | 1000 |
歧管层尺寸 | ||
流道高度 hc/mm | 2 | 2 |
图7 射流腔高度及针翅高度对芯片表面平均温度的影响ss—光滑表面;ps—针翅表面
Fig.7 Effect of jet chamber height and micro-pinfin size on average chip temperaturess—smooth surface; ps—pinfin surface
1 | van Erp R, Soleimanzadeh R, Nela L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211-216. |
2 | Kanduri A, Rahmani A M, Liljeberg P, et al. A perspective on dark silicon[M]//Rahmani A, Liljeberg P, Hemani A, et al. The Dark Side of Silicon. Cham: Springer, 2017: 3-20. |
3 | Hardavellas N, Ferdman M, Falsafi B, et al. Toward dark silicon in servers[J]. IEEE Micro, 2011, 31(4): 6-15. |
4 | Garimella S V, Fleischer A S, Murthy J Y, et al. Thermal challenges in next-generation electronic systems[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(4): 801-815. |
5 | Fan Y, Winkel C, Kulkarni D, et al. Analytical design methodology for liquid based cooling solution for high TDP CPUs[C]//2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). San Diego, CA, USA:IEEE, 2018: 582-586. |
6 | Sun Y F, Agostini N B, Dong S, et al. Summarizing CPU and GPU design trends with product data[EB/OL]. 2019, arXiv: . |
7 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
8 | Brunschwiler T, Michel B, Rothuizen H, et al. Interlayer cooling potential in vertically integrated packages[J]. Microsystem Technologies, 2009, 15(1): 57-74. |
9 | Harpole G M, Eninger J E. Micro-channel heat exchanger optimization[C]//1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. Phoenix, AZ, USA: IEEE, 2002: 59-63. |
10 | Zhang X, JI Z, Wang J, et al. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices[J]. Applied Thermal Engineering, 2023, 235: 121294. |
11 | Sarkas S, Gupta R, Roy T, et al. Review of jet impingement cooling of electronic devices: emerging role of surface engineering[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123888. |
12 | 杨宇驰, 吕佩珏, 杜建宇, 等. 大面积处理芯片嵌入式微流体冷却技术[J]. 微电子学与计算机, 2023, 40(1): 105-123. |
Yang Y C, Lyu P J, Du J Y, et al. Embedded microfluidic cooling technology for large-area processing chips[J]. Microelectronics & Computer, 2023, 40(1): 105-123. | |
13 | Brunschwiler T, Rothuizen H, Fabbri M, et al. Direct liquid jet-impingment cooling with micron-sized nozzle array and distributed return architecture[C]// Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. IEEE, 2006: 196-203. |
14 | Luo Y, Zhang J Z, Li W. A comparative numerical study on two-phase boiling fluid flow and heat transfer in the microchannel heat sink with different manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119864. |
15 | Lin Y H, Luo Y, Li W, et al. Single-phase and two-phase flow and heat transfer in microchannel heat sink with various manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2021, 171:121118. |
16 | Tong J C K, Sparrow E M, Abraham J P. Geometric strategies for attainment of identical outflows through all of the exit ports of a distribution manifold in a manifold system[J]. Applied Thermal Engineering, 2009, 29(17): 3552-3560. |
17 | Sharma C S, Schlottig G, Brunschwiler T, et al. A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 684-694. |
18 | Zhang J, An J, Xin G, et al. Thermal and hydrodynamic characteristics of single-phase flow in manifold microchannels with countercurrent regions[J]. International Journal of Heat and Mass Transfer, 2023, 211: 124265. |
19 | Chen C, Wang X, Yuan B, et al. Investigation of flow and heat transfer performance of the manifold microchannel with different manifold arrangements[J]. Case Studies in Thermal Engineering, 2022, 34: 102073. |
20 | Tang W Y, Li J Y, Wu Z, et al. A numerical investigation of the thermal-hydraulic performance during subcooled flow boiling in MMCs with different manifolds[J]. Applied Thermal Engineering, 2024, 236: 121820. |
21 | Yang M, Cao B Y. Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels[J]. Applied Thermal Engineering, 2019, 159: 113896. |
22 | Pan Y H, Zhao R, Fan X H, et al. Study on the effect of varying channel aspect ratio on heat transfer performance of manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 163(1):120461-120461. |
23 | Chen C W, Li F, Wang X Y, et al. Improvement of flow and heat transfer performance of manifold microchannel with porous fins[J]. Applied Thermal Engineering, 2022, 206: 118129. |
24 | Yuan Y, Chen L, Zhang C D, et al. Numerical investigation of flow boiling heat transfer in manifold microchannels[J]. Applied Thermal Engineering, 2022, 217: 119268. |
25 | Chen H R, Han Y, Tang G Y. Numerical investigation of the optimization on manifold microchannel heat sink towards the water-cooling limit[C]//2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC). Singapore:IEEE, 2021: 513-518. |
26 | Pan Y H, Zhao R, Nian Y L, et al. Numerical study on heat transfer characteristics of a pin-fin staggered manifold microchannel heat sink[J]. Applied Thermal Engineering, 2023, 219: 119436. |
27 | Han Y, Lau B L, Tang G, la et. Si-based hybrid microcooler with multiple drainage microtrenches for high heat flux cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(1): 50-57. |
28 | Hazra S, Wei T W, Lin Y, et al. Parametric design analysis of a multi-level 3D manifolded microchannel cooler via reduced order numerical modeling[J]. International Journal of Heat and Mass Transfer, 2022, 197: 123356. |
29 | Gilmore N, Hassanzadeh-Barforoushi A, Timchenko V, et al. Manifold configurations for uniform flow via topology optimisation and flow visualisation[J]. Applied Thermal Engineering, 2021, 183: 116227. |
30 | Tang W, Sun L, Liu H, et al. Improvement of flow distribution and heat transfer performance of a self-similarity heat sink with a modification to its structure[J]. Applied Thermal Engineering, 2017, 121: 163-171. |
31 | Piazza A, Hazra S, Jung K W, et al. Considerations and challenges for large area embedded micro-channels with 3D manifold in high heat flux power electronics applications[C]//2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA. IEEE, 2020: 77-82. |
[1] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[2] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[3] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[4] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[5] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[6] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[7] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[8] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[9] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
[10] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
[11] | 成文凯, 颜金钰, 王嘉骏, 冯连芳. 卧式捏合反应器及其在聚合工业中的研究进展[J]. 化工学报, 2024, 75(3): 768-781. |
[12] | 谭耀文, 姜攀星, 杜青, 余婉秋, 温小飞, 詹志刚. 工作电压对PEMFC膜电极衰退影响模拟研究[J]. 化工学报, 2024, 75(3): 974-986. |
[13] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[14] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
[15] | 徐百平, 梁瑞凤, 喻慧文, 吴桂群, 肖书平. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 483
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 505
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||