化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1765-1776.DOI: 10.11949/0438-1157.20240109
关朝阳1,2(), 黄国庆1,2, 张一喃1,2, 陈宏霞1,2(
), 杜小泽1,2
收稿日期:
2024-01-24
修回日期:
2024-03-22
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
陈宏霞
作者简介:
关朝阳(2000—),男,硕士研究生,gzy13514512459@163.com
基金资助:
Chaoyang GUAN1,2(), Guoqing HUANG1,2, Yinan ZHANG1,2, Hongxia CHEN1,2(
), Xiaoze DU1,2
Received:
2024-01-24
Revised:
2024-03-22
Online:
2024-05-25
Published:
2024-06-25
Contact:
Hongxia CHEN
摘要:
流动沸腾作为一种高效的换热方法,被广泛应用于高热流设备的冷却。在流动沸腾换热过程中可通过设置多孔疏水结构促进沸腾气泡脱离,为强化沸腾换热提供新思路。在截面为6 mm×4 mm的矩形通道顶部添加浸润角为140°的多孔泡沫铜;并在液相入口温度70、75和80℃,流速为6.94、10.42和13.89 cm/s的不同工况下,观测通道内沸腾两相流流型变化以及泡沫铜的吸气过程对流动沸腾换热性能的影响;基于气泡受力分析获得泡沫铜吸气强化流动沸腾的换热机理。结果显示,在本实验工况范围内添加脱气泡沫铜后,壁面过热度下降可达20.7%;泡沫铜的吸气率为0.81时,热通量可提高至152%;增大入口流速,泡沫铜强化效果显著增大,而入口温度对泡沫铜的吸气效果影响不明显。
中图分类号:
关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776.
Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam[J]. CIESC Journal, 2024, 75(5): 1765-1776.
1 | 党超, 贾力, 黄浅. 矩形微槽道内R134a流动沸腾换热特性的实验研究[J]. 工程热物理学报, 2017, 38(6): 1327-1332. |
Dang C, Jia L, Huang Q. Experimental study on flow boiling heat transfer characteristics of R134a in a rectangular micro-channel[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1327-1332. | |
2 | Wang J, Cheng Y, Li X B, et al. Experimental and LBM simulation study on the effect of bubbles merging on flow boiling[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1053-1061. |
3 | Bi Q C. Characteristics of two-phase flow and boiling heat transfer in miniature non-circular channels[D]. Hong Kong: The Hong Kong University of Science and Technology, 2000. |
4 | 罗炜, 贺静, 罗兵, 等. 截面形状对微通道流动沸腾影响的数值研究[J]. 西安交通大学学报, 2019, 53(11): 101-111. |
Luo W, He J, Luo B, et al. Numerical study on the effect of cross-sectional shape of microchannels on flow boiling[J]. Journal of Xi'an Jiaotong University, 2019, 53(11): 101-111. | |
5 | Jiang Y, Xu Y, Qin J, et al. The flow rate distribution of hydrocarbon fuel in parallel channels with different cross section shapes[J]. Applied Thermal Engineering, 2018, 137: 173-183. |
6 | Sempértegui-Tapia D F, Ribatski G. The effect of the cross-sectional geometry on saturated flow boiling heat transfer in horizontal micro-scale channels[J]. Experimental Thermal and Fluid Science, 2017, 89: 98-109. |
7 | 邓聪, 罗小平, 冯振飞, 等. 矩形微通道内制冷剂流动沸腾传热特性及可视化研究[J]. 制冷学报, 2015, 36(6): 1-5. |
Deng C, Luo X P, Feng Z F, et al. Research on boiling heat transfer characteristics and visualization of refrigerant in rectangular microchannels[J]. Journal of Refrigeration, 2015, 36(6): 1-5. | |
8 | Kuo C J, Peles Y. Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities[J]. Journal of Heat Transfer, 2008, 130(7):92-101. |
9 | Xia G D, Ma D D, Zhai Y L, et al. Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure[J]. Energy Conversion and Management, 2015, 105: 848-857. |
10 | Sitar A, Golobic I. Effect of nucleation cavities on enhanced boiling heat transfer in microchannels[J]. Nanoscale and Microscale Thermophysical Engineering, 2016, 20(1): 33-50. |
11 | Zhu Y, Hu H, Sun S, et al. Heat transfer measurements and correlation of refrigerant flow boiling in tube filled with copper foam[J]. International Journal of Refrigeration, 2014, 38: 215-226. |
12 | Min D H, Hwang G S, Usta Y, et al. 2-D and 3-D modulated porous coatings for enhanced pool boiling[J]. International Journal of Heat and Mass Transfer, 2009, 52(11/12): 2607-2613. |
13 | Law M, Lee P S. A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight- and oblique-finned microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 85: 797-810. |
14 | Filho E P B, Jabardo J M S, Barbieri P E L. Convective boiling pressure drop of refrigerant R-134a in horizontal smooth and microfin tubes[J]. International Journal of Refrigeration, 2004, 27(8): 895-903. |
15 | Kim C H, Bang I C, Chang S H. Critical heat flux performance for flow boiling of R-134a in vertical uniformly heated smooth tube and rifled tubes[J]. International Journal of Heat and Mass Transfer, 2005, 48(14): 2868-2877. |
16 | Cheng L, Xia G. Experimental study of CHF in a vertical spirally internally ribbed tube under the condition of high pressures[J]. International Journal of Thermal Sciences, 2002, 41(4): 396-400. |
17 | Ma A X, Wei J J, Yuan M Z, et al. Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 2925-2931. |
18 | Wan W, Deng D X, Huang Q S, et al. Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks[J]. Applied Thermal Engineering, 2017, 114: 436-449. |
19 | Koşar A, Peles Y. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink[J]. International Journal of Heat and Mass Transfer, 2007, 50(5-6): 1018-1034. |
20 | 陈宏霞, 肖红洋, 孙源, 等. 微柱表面液滴定壁温沸腾实验研究[J]. 化工学报, 2019, 70(9): 3363-3369. |
Chen H X, Xiao H Y, Sun Y, et al. Experimental study on droplets boiling on micro-pillar structure surface with constant temperatures[J]. CIESC Journal, 2019, 70(9): 3363-3369. | |
21 | Choi C, Shin J S, Yu D I, et al. Flow boiling behaviors in hydrophilic and hydrophobic microchannels[J]. Experimental Thermal and Fluid Science, 2010, 35(5): 816-824. |
22 | Kousalya A S, Singh K P, Fisher T S. Heterogeneous wetting surfaces with graphitic petal-decorated carbon nanotubes for enhanced flow boiling[J]. International Journal of Heat and Mass Transfer, 2015, 87: 380-389. |
23 | Kim J M, Kim T, Yu D I, et al. Effect of heterogeneous wetting surface characteristics on flow boiling performance[J]. International Journal of Heat and Fluid Flow, 2018, 70: 141-151. |
24 | 陈宏霞, 马福民, 黄林滨. 超浸润性金属丝网的制备及工艺优化[J]. 材料工程, 2017, 45(9): 59-65. |
Chen H X, Ma F M, Huang L B. Fabrication and process optimization of super-wettability metal mesh[J]. Journal of Materials Engineering, 2017, 45(9): 59-65. | |
25 | Chen H X, Xu J L, Li Z J, et al. Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface[J]. Applied Energy, 2013, 112: 1283-1290. |
26 | Peng X F, Peterson G P, Wang B X. Heat transfer characteristics of water flowing through microchannels[J]. Experimental Heat Transfer, 1994, 7(4): 265-283. |
27 | Matsuda Y, Kawanami O, Orimo R, et al. Simultaneous measurement of gas-liquid interface motion and temperature distribution on heated surface using temperature-sensitive paint[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119567 |
28 | Lee H S. Heat transfer predictions using the Chen Correlation on subcooled flow boiling in a standard IC engine[C]//SAE Technical Paper Series. Warrendale, PA, United States: SAE International, 2009: 2009-01-1530. |
29 | Hua S Y, Huang R H, Li Z, et al. Experimental study on the heat transfer characteristics of subcooled flow boiling with cast iron heating surface[J]. Applied Thermal Engineering, 2015, 77: 180-191. |
30 | Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329. |
31 | Rohsenow W M. A method of correlating heat-transfer data for surface boiling of liquids[J]. Journal of Fluids Engineering, 1952, 74(6): 969-975. |
32 | Reddy Karri S B. Dynamics of bubble departure in micro-gravity[J]. Chemical Engineering Communications, 1988, 70(1): 127-135. |
33 | Levy S. Forced convection subcooled boiling—prediction of vapor volumetric fraction[J]. International Journal of Heat and Mass Transfer, 1967, 10(7): 951-965. |
[1] | 汪威, 白旭, 赵翔, 马学良, 林纬, 喻九阳. 基于响应面法的气浮旋流分离条件优化[J]. 化工学报, 2024, 75(5): 1929-1938. |
[2] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[3] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[4] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[5] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[6] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[7] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
[8] | 王娟, 李秀明, 邵炜涛, 丁续, 霍莹, 付连超, 白云宇, 李迪. 多孔板鼓泡塔流动与传质特性数值模拟[J]. 化工学报, 2024, 75(3): 801-814. |
[9] | 陈思睿, 毕景良, 王雷, 李元媛, 陆规. 气液两相流流型特征无监督提取的卷积自编码器:机理及应用[J]. 化工学报, 2024, 75(3): 847-857. |
[10] | 邓志诚, 许世峰, 王淇冬, 王家瑞, 王斯民. 浸没燃烧处理高盐高化学需氧量废水过程与能耗分析[J]. 化工学报, 2024, 75(3): 1000-1008. |
[11] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
[12] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
[13] | 詹小斌, 王会彬, 蒋亚龙, 史铁林. 声共振混合器高黏度流体混合的功耗特性研究[J]. 化工学报, 2024, 75(2): 531-542. |
[14] | 刘起超, 张世博, 周云龙, 李昱庆, 陈聪, 冉议文. 起伏振动水平管气液两相流型及转变机理[J]. 化工学报, 2024, 75(2): 493-504. |
[15] | 韩东, 高宁宁, 唐新德, 龚升高, 夏良树. 适用欧拉-拉格朗日方法模拟气液泡状流的气泡破碎模型[J]. 化工学报, 2024, 75(2): 553-565. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 480
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||