化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1787-1801.DOI: 10.11949/0438-1157.20240068
收稿日期:
2024-01-14
修回日期:
2024-03-03
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
林梅
作者简介:
谢磊 (2000—),男,硕士研究生,1976875090@qq.com
基金资助:
Lei XIE1(), Yongsheng XU2, Mei LIN1()
Received:
2024-01-14
Revised:
2024-03-03
Online:
2024-05-25
Published:
2024-06-25
Contact:
Mei LIN
摘要:
基于任意拉格朗日-欧拉(ALE)方法,利用动网格技术和重叠网格技术数值模拟研究了不同Reynolds数、截面形状以及长径比下的肋柱-软尾结构在通道中的双向流固耦合换热问题。模拟工况为:Reynolds数Re = 200,275,351;肋柱截面形状:圆形和方形;长径比k = 2,3,4。研究表明:Re = 275时圆形截面肋柱-软尾结构的流动换热综合能力优于方形截面结构,k = 3时圆形截面肋柱-软尾结构的流动换热综合能力最佳,肋柱周围的局部换热能力方形截面结构好于圆形截面结构;k = 3时,随着Reynolds数的增大,不同截面形状的肋柱-软尾结构的流动换热综合能力逐渐升高,并且高Reynolds数、高长径比的圆形截面综合流动换热能力最佳;与不加软尾肋柱结构的流动换热能力进行对比发现,对于圆形截面形状的肋柱结构,增加软尾后综合换热能力增大了19.46%。
中图分类号:
谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801.
Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures[J]. CIESC Journal, 2024, 75(5): 1787-1801.
来源 | 振幅A/mm | 周期T0/s | 频率f/Hz |
---|---|---|---|
文献[ | 12.475 | 0.320 | 3.13 |
文献[ | 9.843 | 0.319 | 3.14 |
本研究 | 10.361 | 0.314 | 3.18 |
表1 软尾自由端的振幅、周期和频率
Table 1 Amplitude, period and frequency of free end of the soft tail
来源 | 振幅A/mm | 周期T0/s | 频率f/Hz |
---|---|---|---|
文献[ | 12.475 | 0.320 | 3.13 |
文献[ | 9.843 | 0.319 | 3.14 |
本研究 | 10.361 | 0.314 | 3.18 |
图4 不同截面形状、不同长径比对温度场、涡量场和速度场的影响(Re=275)
Fig.4 Effect of different cross-sectional shapes and length-to-diameter ratios on temperature, vorticity and velocity fields (Re = 275)
图11 不同Reynolds数、不同截面形状肋柱的温度场、涡量场和速度场的变化 (k = 3)
Fig.11 Variation of temperature, vorticity and velocity fields for different Reynolds numbers and cross-section shapes (k = 3)
图13 不同Reynolds数下方柱的温度场、涡量场和速度场变化(k = 2)
Fig.13 Variation of temperature, vorticity and velocity fields of square rib at different Reynolds numbers (k = 2)
参数 | 方形截面肋柱 | 圆形截面肋柱 | ||
---|---|---|---|---|
k = 0 | k = 4 | k = 0 | k = 4 | |
Nuxt | 7.867 | 7.271 | 11.797 | 8.398 |
fd | 0.177 | 0.164 | 0.207 | 0.123 |
J | 44.337 | 44.208 | 56.975 | 68.064 |
表2 长径比k = 0和4的流动换热参数对比
Table 2 Comparison of flow and heat transfer parameters for length-to-diameter ratio k = 0 and 4
参数 | 方形截面肋柱 | 圆形截面肋柱 | ||
---|---|---|---|---|
k = 0 | k = 4 | k = 0 | k = 4 | |
Nuxt | 7.867 | 7.271 | 11.797 | 8.398 |
fd | 0.177 | 0.164 | 0.207 | 0.123 |
J | 44.337 | 44.208 | 56.975 | 68.064 |
图16 方柱结构在一个摆动周期内不同时刻温度云图、涡量云图、速度云图和压力云图变化情况(Re = 351, k = 4)
Fig.16 Variation of temperature, vorticity, velocity and pressure contours of square rib at different moments during an oscillation period (Re = 351, k = 4)
1 | 皇甫宇澄, 孙志强. 带弹性分隔板的低Reynolds数圆柱绕流尾迹演化特性[J]. 中南大学学报(自然科学版), 2019, 50(2): 474-479. |
Huangfu Y C, Sun Z Q. Evolution of wake characteristics behind circular cylinder with an elastic splitter plate at low Reynolds number[J]. Journal of Central South University (Science and Technology), 2019, 50(2): 474-479. | |
2 | 种叶龙, 杨茉. 流道内错列倒置柔性体运动及强化传热分析[J]. 暖通空调, 2023, 53(6): 156-161, 55. |
Chong Y L, Yang M. Analysis of motion and heat transfer enhancement of staggered inverted flexible bodies in flow channels[J]. Heating Ventilating & Air Conditioning, 2023, 53(6): 156-161, 55. | |
3 | Wu J, Shu C. Numerical study of flow characteristics behind a stationary circular cylinder with a flapping plate[J]. Physics of Fluids, 2011, 23(7): 73601-73607. |
4 | Gu F, Wang J S, Qiao X Q, et al. Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates[J]. Journal of Fluids and Structures, 2012, 28: 263-278. |
5 | 汪健生, 徐亚坤. 带有柔性薄板三维方柱流固耦合的数值模拟研究[J]. 计算力学学报, 2017, 34(1): 117-122, 129. |
Wang J S, Xu Y K. Simulations of flow past a square cylinder with a flexible plate based on fluid-solid coupling method[J]. Chinese Journal of Computational Mechanics, 2017, 34(1): 117-122, 129. | |
6 | 李哲阳. 流体诱导振动的双向热流固耦合强化传热机理研究[D]. 南昌:南昌大学, 2018. |
Li Z Y. Study on heat transfer enhancement mechanism of two way thermal fluid structure coupling for fluid induced structure vibration[D]. Nanchang: Nanchang University, 2018. | |
7 | 韩田. 圆柱诱导柔性板涡致振动强化传热研究[D]. 兰州:兰州交通大学, 2021. |
Han T. Heat transfer enhancement by vortex-induced vibration of flexible plate induced by cylinder[D]. Lanzhou: Lanzhou Jiaotong University, 2021. | |
8 | Fu W S, Tong B H. Numerical investigation of heat transfer from a heated oscillating cylinder in a cross flow[J]. International Journal of Heat and Mass Transfer, 2002, 45(14): 3033-3043. |
9 | Fu W S, Tong B H. Numerical investigation of heat transfer characteristics of the heated blocks in the channel with a transversely oscillating cylinder[J]. International Journal of Heat and Mass Transfer, 2004, 47(2): 341-351. |
10 | 张喜东, 黄护林. 圆柱绕流中扰动体强化传热和减阻[J]. 化工学报, 2014, 65(2): 488-494. |
Zhang X D, Huang H L. Heat transfer enhancement and drag reduction with rod for flow around cylinder[J]. CIESC Journal, 2014, 65(2): 488-494. | |
11 | 姬长发, 慕红艳, 孙瑞科, 等. 插入扰流元件换热管强化换热效果分析[J]. 化工学报, 2012, 63(S2): 58-63. |
Ji C F, Mu H Y, Sun R K, et al. Analysis of heat transfer enhancement effect of heat exchange tube inserted with spoiler[J]. CIESC Journal, 2012, 63(S2): 58-63. | |
12 | Soti A K, Bhardwaj R, Sheridan J. Flow-induced deformation of a flexible thin structure as manifestation of heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 2015, 84: 1070-1081. |
13 | Park K H, Min J K, Kim J K, et al. A study on a flexible wing with up-down vibration in a pulsating flow of cooling air to improve heat transfer efficiency[J]. Heat and Mass Transfer, 2013, 49(10): 1459-1470. |
14 | Shi J X, Hu J W, Schafer S R, et al. Numerical study of heat transfer enhancement of channel via vortex-induced vibration[J]. Applied Thermal Engineering, 2014, 70(1): 838-845. |
15 | Joshi R U, Soti A K, Bhardwaj R. Numerical study of heat transfer enhancement by deformable twin plates in laminar heated channel flow[J]. Computational Thermal Sciences, 2015, 7(5/6): 467-476. |
16 | Ali S, Menanteau S, Habchi C, et al. Heat transfer and mixing enhancement by using multiple freely oscillating flexible vortex generators[J]. Applied Thermal Engineering, 2016, 105: 276-289. |
17 | 麻程柳, 杨茉, 李峥, 等. 通道内柔性体流固耦合对流动和换热的影响[J]. 动力工程学报, 2020, 40(8): 635-640, 653. |
Ma C L, Yang M, Li Z, et al. Influence of fluid-solid coupling on flow and heat transfer in a channel with a flexible body inserted[J]. Journal of Chinese Society of Power Engineering, 2020, 40(8): 635-640, 653. | |
18 | 苗春虎, 齐晓霓, 屈晓航, 等. 通道内置三维柔性元件强化传热特性的数值模拟研究[J]. 热能动力工程, 2022, 37(8): 100-108. |
Miao C H, Qi X N, Qu X H, et al. Numerical simulation research on enhanced heat transfer characteristics of three-dimensional flexible elements embedded in channels[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(8): 100-108. | |
19 | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006. |
Yang S M, Tao W Q. Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006. | |
20 | Ghalambaz M, Jamesahar E, Ismael M A, et al. Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity[J]. International Journal of Thermal Sciences, 2017, 111: 256-273. |
21 | 黄其, 章晓敏, 宓霄凌, 等. 三角槽道低Reynolds数脉动流与柔性壁耦合特性研究[J]. 化工学报, 2022, 73(5): 1964-1973. |
Huang Q, Zhang X M, Mi X L, et al. Coupling characteristics of low Reynolds number pulsating flow and flexible wall in triangular channel[J]. CIESC Journal, 2022, 73(5): 1964-1973. | |
22 | Sun X, Ye Z H, Li J J, et al. Forced convection heat transfer from a circular cylinder with a flexible fin[J]. International Journal of Heat and Mass Transfer, 2019, 128: 319-334. |
23 | Souli M, Ouahsine A, Lewin L. ALE formulation for fluid-structure interaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(5/6/7): 659-675. |
24 | 谭涵林, 阮文俊, 步鹏飞, 等. 基于ALE方法的柔性飘带阻力特性研究[J]. 弹箭与制导学报, 2023, 43(4): 52-59. |
Tan H L, Ruan W J, Bu P F, et al. Study on drag characteristics of flexible ribbon based on ALE method[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2023, 43(4): 52-59. | |
25 | 施鎏鎏. 近壁方柱尾迹非定常特性的实验研究及本征正交分解分析[D]. 上海:上海交通大学, 2010. |
Shi L L. Experimental study and proper orthogonal decomposition analysis of unsteady wake characteristics of square columns near the wall[D]. Shanghai: Shanghai Jiao Tong University, 2010. | |
26 | 邹瑞. 基于嵌套网格方法的双圆柱流致振动分析[D]. 重庆: 重庆大学, 2019. |
Zou R. Research on flow-induced vibration of two circular cylinders based on overset grid[D]. Chongqing: Chongqing University, 2019. | |
27 | 李鹏, 高振勋, 蒋崇文. 重叠网格方法的研究进展[J]. 力学与实践, 2014, 36(5): 551-565. |
Li P, Gao Z X, Jiang C W. The progress of the overlapping grid techniques[J]. Mechanics in Engineering, 2014, 36(5): 551-565. | |
28 | Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[M] //Lecture Notes in Computational Science and Engineering. Berlin, Heidelberg: Springer, 2007: 371-385. |
29 | 胡世良, 鲁传敬, 何友声. 平板流固耦合振动的数值分析[J]. 上海交通大学学报, 2013, 47(10): 1487-1493, 1502. |
Hu S L, Lu C J, He Y S. Numerical analysis of fluid-structure interaction vibration for plate[J]. Journal of Shanghai Jiao Tong University, 2013,47(10): 1487-1493, 1502. | |
30 | Wille R, Fernholz H. Report on the first European Mechanics Colloquium, on the Coanda effect[J]. Journal of Fluid Mechanics, 1965, 23: 801-819. |
[1] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[2] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[3] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[4] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[5] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[6] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[7] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
[8] | 肖扬可, 常印龙, 李平, 王文俊, 李伯耿, 刘平伟. 动态化学交联聚烯烃类弹性体研究进展[J]. 化工学报, 2024, 75(4): 1394-1413. |
[9] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[10] | 徐百平, 梁瑞凤, 喻慧文, 吴桂群, 肖书平. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
[11] | 屠楠, 刘晓群, 王驰宇, 方嘉宾. 连续进出料鼓泡流化床停留时间分布的相似准则研究[J]. 化工学报, 2024, 75(2): 543-552. |
[12] | 崔怡洲, 李成祥, 翟霖晓, 刘束玉, 石孝刚, 高金森, 蓝兴英. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2024, 75(1): 197-210. |
[13] | 麻雪怡, 刘克勤, 胡激江, 姚臻. POE溶液聚合反应器内混合与反应过程的CFD研究[J]. 化工学报, 2024, 75(1): 322-337. |
[14] | 周尧, 杨小平, 倪一程, 刘继平, 魏进家, 严俊杰. 应用于新型环路热管的两相引射器数值模拟[J]. 化工学报, 2024, 75(1): 268-278. |
[15] | 余洋, 罗祎青, 魏荣辉, 张文慧, 袁希钢. 考虑节点中断风险的弹性供应链设计方法[J]. 化工学报, 2024, 75(1): 338-353. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||