化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2446-2454.DOI: 10.11949/0438-1157.20231358
收稿日期:
2023-12-21
修回日期:
2024-03-27
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
梁深
作者简介:
杨锦蕊(1999—),女,硕士研究生,yangjinrui2021@163.com
基金资助:
Jinrui YANG(), Hongfei ZHENG, Xinglong MA, Rihui JIN, Shen LIANG()
Received:
2023-12-21
Revised:
2024-03-27
Online:
2024-07-25
Published:
2024-08-09
Contact:
Shen LIANG
摘要:
空气加湿除湿海水淡化是极具应用前景的淡水生产技术。然而,由于加湿、除湿腔内存在喷淋不均匀现象,且喷淋不均对加湿过程的影响更大,致使加湿除湿过程的热质传递系数不匹配,进而致使其单位体积产水量偏低。为此,提出一种两级叠置式加湿除湿海水淡化装置,其两个加湿腔共用一个除湿腔,从而缩小了装置体积,提高了单位体积产水量。研究了供料海水流量、温度及预热对其性能的影响。结果表明,装置产水量随供料海水流量、温度的升高而增加。供料海水流量由0.45 t/h增至0.96 t/h,产水量从18.7 kg/h增加到27.1 kg/h;供料海水温度为85℃,产水量达33.7 kg/h,对应热利用系数为0.9;预热装置,可将其产水量提高6.8%。此外,其单位体积产水量可达33.7 kg/(m3∙h),远高于传统两级空气加湿除湿海水淡化装置。
中图分类号:
杨锦蕊, 郑宏飞, 马兴龙, 金日辉, 梁深. 两级叠置式加湿除湿海水淡化装置性能研究[J]. 化工学报, 2024, 75(7): 2446-2454.
Jinrui YANG, Hongfei ZHENG, Xinglong MA, Rihui JIN, Shen LIANG. Study on two-stage stacked humidification-dehumidification desalination device[J]. CIESC Journal, 2024, 75(7): 2446-2454.
仪器名称 | 测量范围 | 精度/% |
---|---|---|
温度传感器/K型 | -50~260℃ | ±0.75 |
32通道记录仪/KSF32AOR | -200~600℃ | ±1 |
调频器/Y500 | 0~50 Hz | ±0.1 |
热线风速计/QDF-6 | 0.05~30 m/s | ±5 |
不锈钢流量计/K24 | 15~150 L/min | ±1 |
电子秤/HC UTP-06B | 0.001~1 kg | ±0.5 |
DC水泵/24VDC | 扬程15 m | — |
表1 试验所用的主要仪器及其参数
Table 1 Technical specifications of instruments used in experimental setup
仪器名称 | 测量范围 | 精度/% |
---|---|---|
温度传感器/K型 | -50~260℃ | ±0.75 |
32通道记录仪/KSF32AOR | -200~600℃ | ±1 |
调频器/Y500 | 0~50 Hz | ±0.1 |
热线风速计/QDF-6 | 0.05~30 m/s | ±5 |
不锈钢流量计/K24 | 15~150 L/min | ±1 |
电子秤/HC UTP-06B | 0.001~1 kg | ±0.5 |
DC水泵/24VDC | 扬程15 m | — |
文献 | 级数 | GOR | 装置体积/m3 | 产水量/(kg/h) | 单位体积产水量/(kg/(m3∙h)) |
---|---|---|---|---|---|
[ | 2 | 1.98 | 1.85 | 42.84 | 23.15 |
[ | 3 | 2.27 | 8.28 | 182.16 | 22.0 |
[ | 4 | 1.23 | 0.22 | 3.66 | 16.6 |
[ | 1 | 0.53 | 1.86 | 19.6 | 10.5 |
[ | 1 | — | 0.32 | 5.90 | 18.32 |
[ | 1 | 0.38 | 0.36 | 3.68 | 8.75 |
[ | 1 | 0.39 | 0.038 | 0.792 | 20.73 |
本装置 | 2 | 0.9 | 1 | 33.7 | 33.7 |
表2 本装置与其他研究对比
Table 2 Comparison of this device with other studies
文献 | 级数 | GOR | 装置体积/m3 | 产水量/(kg/h) | 单位体积产水量/(kg/(m3∙h)) |
---|---|---|---|---|---|
[ | 2 | 1.98 | 1.85 | 42.84 | 23.15 |
[ | 3 | 2.27 | 8.28 | 182.16 | 22.0 |
[ | 4 | 1.23 | 0.22 | 3.66 | 16.6 |
[ | 1 | 0.53 | 1.86 | 19.6 | 10.5 |
[ | 1 | — | 0.32 | 5.90 | 18.32 |
[ | 1 | 0.38 | 0.36 | 3.68 | 8.75 |
[ | 1 | 0.39 | 0.038 | 0.792 | 20.73 |
本装置 | 2 | 0.9 | 1 | 33.7 | 33.7 |
1 | Zheng Y J, Hatzell K B. Technoeconomic analysis of solar thermal desalination[J]. Desalination, 2020, 474: 114168. |
2 | Zhu Z Y, Zheng H F, Kong H, et al. Passive solar desalination towards high efficiency and salt rejection via a reverse-evaporating water layer of millimetre-scale thickness[J]. Nature Water, 2023, 1: 790-799. |
3 | Cheng H Y, Zheng H F, Wang Z Z, et al. A concentrating light multistage rising film solar distiller with a central cooling structure[J]. Solar Energy, 2023, 257: 96-109. |
4 | 胡仰栋, 卢彦越, 徐冬梅, 等. 反渗透海水淡化系统中膜组件的清洗策略[J]. 化工学报, 2005, 56(3): 499-505. |
Hu Y D, Lu Y Y, Xu D M, et al. Cleaning strategy of membrane modules in reverse osmosis seawater desalination system[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(3): 499-505. | |
5 | 蔡本安, 郭民承, 车勋建, 等. 多级喷雾闪蒸海水淡化系统性能分析及响应面优化研究[J]. 化工学报, 2021, 72(11): 5573-5581. |
Cai B A, Guo M C, Che X J, et al. Performance analysis and response surface optimization of multi-stage spray flash desalination system[J]. CIESC Journal, 2021, 72(11): 5573-5581. | |
6 | 沈胜强, 周士鹤, 牟兴森, 等. 大型低温多效蒸发海水淡化装置传热过程热力损失分析[J]. 化工学报, 2014, 65(9): 3366-3374. |
Shen S Q, Zhou S H, Mu X S, et al. Analysis of thermodynamic losses of heat transfer process in large-scale LT-MED desalination plant[J]. CIESC Journal, 2014, 65(9): 3366-3374. | |
7 | 王刚, 郝亮, 张冠锋, 等. 基于风能利用的机械蒸汽压缩海水淡化系统模拟[J]. 热科学与技术, 2017, 16(1): 40-46. |
Wang G, Hao L, Zhang G F, et al. System simulation of mechanical vapor compression seawater desalination plant using wind power[J]. Journal of Thermal Science and Technology, 2017, 16(1): 40-46. | |
8 | Ng K C, Thu K, Oh S J, et al. Recent developments in thermally-driven seawater desalination: energy efficiency improvement by hybridization of the MED and AD cycles[J]. Desalination, 2015, 356: 255-270. |
9 | Srithar K, Rajaseenivasan T. Recent fresh water augmentation techniques in solar still and HDH desalination—a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 629-644. |
10 | Rahimi-Ahar Z, Hatamipour M S, Ahar L R. Air humidification-dehumidification process for desalination: a review[J]. Progress in Energy and Combustion Science, 2020, 80: 100850. |
11 | Sharqawy M H, Antar M A, Zubair S M, et al. Optimum thermal design of humidification dehumidification desalination systems[J]. Desalination, 2014, 349: 10-21. |
12 | Ghazouani N, El-Bary A A, Hassan G E, et al. Solar desalination by humidification-dehumidification: a review[J]. Water, 2022, 14(21): 3424. |
13 | Faegh M, Behnam P, Shafii M B. A review on recent advances in humidification-dehumidification (HDH) desalination systems integrated with refrigeration, power and desalination technologies[J]. Energy Conversion and Management, 2019, 196: 1002-1036. |
14 | Garg K, Das S K, Tyagi H. Thermal design of a humidification-dehumidification desalination cycle consisting of packed-bed humidifier and finned-tube dehumidifier[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122153. |
15 | He W F, Xu L N, Han D, et al. Thermodynamic investigation of waste heat driven desalination unit based on humidification dehumidification (HDH) processes[J]. Applied Thermal Engineering, 2016, 100: 315-324. |
16 | 从硕, 陈佳明, 蔡景成, 等. 加湿除湿脱盐系统的热力学分析及实验研究[J]. 浙江大学学报(工学版), 2019(4): 684-691. |
Cong S, Chen J M, Cai J C, et al. Thermodynamic analysis and experimental study on humidification-dehumidification desalination system[J]. Journal of Zhejiang University (Engineering Science), 2019(4): 684-691. | |
17 | 王岳, 季旭, 闫磊磊, 等. 负压对太阳能加湿除湿产淡水性能的影响[J]. 太阳能学报, 2022, 43(3): 251-255. |
Wang Y, Ji X, Yan L L, et al. Influence of solar sub-atmospheric pressure on performance of humidification and dehumidification desalination system[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 251-255. | |
18 | 李正良, 伍纲, 陈名贤, 等. 叠置式太阳能加湿除湿海水淡化系统的稳态性能研究[J]. 太阳能学报, 2018, 39(6): 1481-1488. |
Li Z L, Wu G, Chen M X, et al. Steady state performance research of superposition solar humidification and dehumidification desalination system[J]. Acta Energiae Solaris Sinica, 2018, 39(6): 1481-1488. | |
19 | 常泽辉, 郑宏飞, 侯静, 等. 两级多效太阳能增湿除湿苦咸水淡化装置的性能研究[J]. 北京理工大学学报, 2015, 35(1): 27-33. |
Chang Z H, Zheng H F, Hou J, et al. Performance of a two-stage multi-effect solar desalination system based on humidification-dehumidification process[J]. Transactions of Beijing Institute of Technology, 2015, 35(1): 27-33. | |
20 | Gang W, Zheng H F, Kang H F, et al. Experimental investigation of a multi-effect isothermal heat with tandem solar desalination system based on humidification-dehumidification processes[J]. Desalination, 2016, 378: 100-107. |
21 | 赵云胜, 郑宏飞, 马兴龙, 等. 多级淡水吸收式交叉流加湿除湿海水淡化系统研究[J]. 工程热物理学报, 2019, 40(10): 2226-2231. |
Zhao Y S, Zheng H F, Ma X L, et al. Study on multi-effect solar humidification-dehumidification desalination system with cross flow and fresh water cooling[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2226-2231. | |
22 | 刘方舟, 马兴龙, 郑宏飞, 等. 多级鼓泡式加湿除湿型太阳能海水淡化装置研究[J]. 太阳能学报, 2022, 43(5): 238-243. |
Liu F Z, Ma X L, Zheng H F, et al. Study on multi-stage bubbling humidification and dehumidification solar desalination device[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 238-243. | |
23 | 孔慧, 杨锦蕊, 陈靖, 等. 太阳能热法海水淡化发展的关键路径[J]. 太阳能学报, 2023, 44(4): 479-486. |
Kong H, Yang J R, Chen J, et al. Critical path for development of solar thermal seawater desalination[J]. Acta Energiae Solaris Sinica, 2023, 44(4): 479-486. | |
24 | Muthusamy C, Srithar K. Energy and exergy analysis for a humidification-dehumidification desalination system integrated with multiple inserts[J]. Desalination, 2015, 367: 49-59. |
25 | Nawayseh N K, Farid M M, Al-Hallaj S, et al. Solar desalination based on humidification process (Ⅰ): Evaluating the heat and mass transfer coefficients[J]. Energy Conversion and Management, 1999, 40(13): 1423-1439. |
26 | Kong Q J, Liu D Y, Wang P, et al. Experimental study on the heat and mass transfer characteristics of a counter-flow wet cooling tower with foam ceramic packing[J]. Thermophysics and Aeromechanics, 2019, 26(2): 267-279. |
27 | Liang S, Ma X L, Zhang N, et al. Effectiveness of a built-in air duct desalination machine with absorption process[J]. Applied Thermal Engineering, 2021, 189: 116708. |
28 | 汲超, 韩东, 王景炎. 双热质耦合加湿除湿海水淡化性能试验分析[J]. 节能技术, 2019, 37(2): 134-139. |
Ji C, Han D, Wang J Y. Performance analysis experimentally of a dual heat and mass transfer coupled humidification dehumidification desalination[J]. Energy Conservation Technology, 2019, 37(2): 134-139. | |
29 | Moumouh J, Tahiri M, Salouhi M, et al. Theoretical and experimental study of a solar desalination unit based on humidification-dehumidification of air[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20818-20822. |
30 | Farshchi Tabrizi F, Khosravi M, Shirzaei Sani I. Experimental study of a cascade solar still coupled with a humidification-dehumidification system[J]. Energy Conversion and Management, 2016, 115: 80-88. |
[1] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
[2] | 余清杰, 杨洪海, 刘玉浩, 方海洲, 何伟琪, 王军, 卢心诚. 脉动热管温度信号的小波分析及流型识别[J]. 化工学报, 2024, 75(7): 2497-2504. |
[3] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[4] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[5] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[6] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[7] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[8] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[9] | 蒋方涛, 钱刚, 周兴贵, 段学志, 张晶. 基于[bmim][BF4]相转移催化的氟代碳酸乙烯酯高效合成[J]. 化工学报, 2024, 75(4): 1543-1551. |
[10] | 程婷, 焦纬洲, 刘有智. 功能性填料在超重力旋转填料床中的应用和研究进展[J]. 化工学报, 2024, 75(4): 1414-1428. |
[11] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
[12] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
[13] | 董霄, 白志山, 杨晓勇, 殷伟, 刘宁普, 于启凡. CHPPO工艺氧化液耦合除杂技术的研究与工业应用[J]. 化工学报, 2024, 75(4): 1630-1641. |
[14] | 王娟, 李秀明, 邵炜涛, 丁续, 霍莹, 付连超, 白云宇, 李迪. 多孔板鼓泡塔流动与传质特性数值模拟[J]. 化工学报, 2024, 75(3): 801-814. |
[15] | 王佳琪, 魏皓琦, 苟阿静, 刘佳兴, 周昕霖, 葛坤. 纳米粒子作用下CO2水合物生成机理研究[J]. 化工学报, 2024, 75(3): 956-966. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||