化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2455-2464.DOI: 10.11949/0438-1157.20240176
方立昌(), 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬(), 陈颖
收稿日期:
2024-02-18
修回日期:
2024-04-26
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
王智彬
作者简介:
方立昌(2000—),男,本科生,2632249533@qq.com
基金资助:
Lichang FANG(), Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG(), Ying CHEN
Received:
2024-02-18
Revised:
2024-04-26
Online:
2024-07-25
Published:
2024-08-09
Contact:
Zhibin WANG
摘要:
针对传统离散相模型(DPM)由于未考虑颗粒体积影响导致无法准确预测相变微胶囊悬浮液(MEPCMS)的压降,采用修正DPM模型,准确预测MEPCMS在芯片阵列中的流动传热特性,考察芯片发热功率及功率分布对冷却特性的影响规律。结果表明,MEPCMS相比于纯基液,平均Nusselt数Nuav最高可提升30.03%,壁面温升ΔTw最高可降低7.19%,综合性能评价因子η均大于1;芯片功率越高越靠近出口,悬浮液冷却效果提升越明显,高功率芯片靠近进口有利于抑制芯片的最高温升,靠近出口时悬浮液Nuav的增幅大于摩擦因子和进出口压降的增幅,可见其受发热功率的影响较小,受功率分布的影响较大。为MEPCMS在细小通道内流动传热特性的认识及在电子器件热管理方面的应用提供参考。
中图分类号:
方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464.
Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry[J]. CIESC Journal, 2024, 75(7): 2455-2464.
材料 | ρ/(kg·m-3) | cp /(J·kg-1·K-1) | k/(W·m-1·K-1) | μ/(Pa·s) |
---|---|---|---|---|
正二十烷 (固态/液态) | 815.0/780.0 | 1920.0/2460.0 | 0.150 | — |
PMMA(壳层) | 1180.0 | 1440.0 | 0.184 | — |
MEPCM | 849.8 | 2047.5 | 0.140 | — |
water | ρf | cp, f | kf | μf |
表1 材料物性参数
Table 1 Physical property parameters of materials
材料 | ρ/(kg·m-3) | cp /(J·kg-1·K-1) | k/(W·m-1·K-1) | μ/(Pa·s) |
---|---|---|---|---|
正二十烷 (固态/液态) | 815.0/780.0 | 1920.0/2460.0 | 0.150 | — |
PMMA(壳层) | 1180.0 | 1440.0 | 0.184 | — |
MEPCM | 849.8 | 2047.5 | 0.140 | — |
water | ρf | cp, f | kf | μf |
网格数/个 | 出口流体 温差/K | 温差误差百分比/% | 压降/Pa | 压降误差百分比/% |
---|---|---|---|---|
358400 | 28.14060 | 0.22 | 133.36781 | 3.66 |
448000 | 28.13032 | 0.19 | 133.98217 | 3.22 |
716800 | 28.12691 | 0.18 | 135.17545 | 2.36 |
896000 | 28.11733 | 0.14 | 137.15393 | 0.93 |
1792000 | 28.07688 | — | 138.43996 | — |
表2 网格无关性验证
Table 2 Grid sensitivity analysis using MEPCMS
网格数/个 | 出口流体 温差/K | 温差误差百分比/% | 压降/Pa | 压降误差百分比/% |
---|---|---|---|---|
358400 | 28.14060 | 0.22 | 133.36781 | 3.66 |
448000 | 28.13032 | 0.19 | 133.98217 | 3.22 |
716800 | 28.12691 | 0.18 | 135.17545 | 2.36 |
896000 | 28.11733 | 0.14 | 137.15393 | 0.93 |
1792000 | 28.07688 | — | 138.43996 | — |
工况编号 | 高功率芯片 | 低功率芯片 |
---|---|---|
Ⅰ | chip 1~chip 4 | chip 5~chip 8 |
Ⅱ | chip 2~chip 5 | chip 1、chip 6~chip 8 |
Ⅲ | chip 3~chip 6 | chip 1~chip 2、chip 7~chip 8 |
Ⅳ | chip 4~chip 7 | chip 1~chip 3、chip 8 |
Ⅴ | chip 5~chip 8 | chip 1~chip 4 |
表3 芯片功率非均匀分布工况
Table 3 Chip power non-uniform distribution condition
工况编号 | 高功率芯片 | 低功率芯片 |
---|---|---|
Ⅰ | chip 1~chip 4 | chip 5~chip 8 |
Ⅱ | chip 2~chip 5 | chip 1、chip 6~chip 8 |
Ⅲ | chip 3~chip 6 | chip 1~chip 2、chip 7~chip 8 |
Ⅳ | chip 4~chip 7 | chip 1~chip 3、chip 8 |
Ⅴ | chip 5~chip 8 | chip 1~chip 4 |
1 | Zhou W N, Dong K J, Sun Q, et al. Research progress of the liquid cold plate cooling technology for server electronic chips: a review[J]. International Journal of Energy Research, 2022, 46(9): 11574-11595. |
2 | Tang H, Tang Y, Wan Z P, et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy, 2018, 223: 383-400. |
3 | Vasileska D. Modeling thermal effects in nano-devices[J]. Microelectronic Engineering, 2013, 109: 163-167. |
4 | Ansari D, Kim K Y. Hotspot thermal management using a microchannel-pinfin hybrid heat sink[J]. International Journal of Thermal Sciences, 2018, 134: 27-39. |
5 | Maganti L S, Dhar P, Sundararajan T, et al. Mitigating non-uniform heat generation induced hot spot(s) in multicore processors using nanofluids in parallel microchannels[J]. International Journal of Thermal Sciences, 2018, 125: 185-196. |
6 | Hao X H, Peng B, Xie G N, et al. Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink[J]. Applied Thermal Engineering, 2016, 100: 170-178. |
7 | Mahajan R, Chiu C, Chrysler G. Cooling a microprocessor chip[J]. Proceedings of the IEEE, 2006, 94: 1476-1486. |
8 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
9 | Siddique A, Sakalkale K, Saha S K, et al. Investigation of flow distribution and effect of aspect ratio on critical heat flux in multiple parallel microchannel flow boiling[J]. Heat and Mass Transfer, 2021, 57(4): 647-663. |
10 | 聂晓蕾, 余灏成, 朱婉婷, 等. 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价[J]. 物理学报, 2022, 71(15): 235-244. |
Nie X L, Yu H C, Zhu W T, et al. Design,fabrication and performance evaluation of graphene/Bi0.5Sb1.5Te3 flexible thermoelectric films and in-plane heat dissipation devices[J]. Acta Physica Sinica, 2022, 71(15): 235-244. | |
11 | Fan Y, Zhao X D, Li G Q, et al. Analytical and experimental study of an innovative multiple-throughout-flowing micro-channel-panels-array for a solar-powered rural house space heating system[J]. Energy, 2019, 171: 566-580. |
12 | Hasan M I. Numerical investigation of counter flow microchannel heat exchanger with MEPCM suspension[J]. Applied Thermal Engineering, 2011, 31(6/7): 1068-1075. |
13 | Nazir H, Batool M, Bolivar Osorio F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
14 | Wang F X, Lin W Z, Ling Z Y, et al. A comprehensive review on phase change material emulsions: fabrication, characteristics, and heat transfer performance[J]. Solar Energy Materials and Solar Cells, 2019, 191: 218-234. |
15 | 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟[J]. 物理学报, 2012, 61(3): 247-259. |
Zhang M K, Chen S, Shang Z. Numerical simulation of a droplet motion in a grooved microchannel[J]. Acta Physica Sinica, 2012, 61(3): 247-259. | |
16 | 郭义丰, 王智彬, 贾莉斯, 等. 液冷微通道内相变微胶囊的壁面温升抑制特性数值模拟[J]. 物理学报, 2023, 72(10): 273-284. |
Guo Y F, Wang Z B, Jia L S, et al. Numerical simulation of inhibition characteristics of wall temperature rise of phase change microcapsule in liquid-cooled microchannel[J]. Acta Physica Sinica, 2023, 72(10): 273-284. | |
17 | Song K X, Guo Y F, Wang Z B, et al. Numerical simulation study on heat transfer characteristics of particle-loaded flow in microchannels[J]. Chemical Engineering & Technology, 2024. 47(2): 387-395. |
18 | Liu L K, Alva G, Jia Y T, et al. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage[J]. Energy and Buildings, 2017, 134: 37-51. |
19 | Zhang G H, Cui G M, Dou B L, et al. An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat flux[J]. Energy Conversion and Management, 2018, 171: 699-709. |
20 | Chen M, Wang Y, Liu Z M. Experimental study on micro-encapsulated phase change material slurry flowing in straight and wavy microchannels[J]. Applied Thermal Engineering, 2021, 190: 116841. |
21 | Rajabi Far B, Mohammadian S K, Khanna S K, et al. Effects of pin tip-clearance on the performance of an enhanced microchannel heat sink with oblique fins and phase change material slurry[J]. International Journal of Heat and Mass Transfer, 2015, 83: 136-145. |
22 | Hu X X, Zhang Y P. Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux[J]. International Journal of Heat and Mass Transfer, 2002, 45(15): 3163-3172. |
23 | Dai H, Chen W. Numerical investigation of heat transfer in the double-layered minichannel with microencapsulated phase change suspension[J]. International Communications in Heat and Mass Transfer, 2020, 119: 104918. |
24 | Languri E M, Rokni H B, Alvarado J, et al. Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils: a numerical and analytical study[J]. International Journal of Heat and Mass Transfer, 2018, 118: 872-878. |
25 | Alquaity A B S, Al-Dini S A, Yilbas B S. Investigation into thermal performance of nanosized phase change material (PCM) in microchannel flow[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2013, 23(2): 233-247. |
26 | Xia G D, Ma D D, Zhai Y L, et al. Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure[J]. Energy Conversion and Management, 2015, 105: 848-857. |
27 | Dammel F, Stephan P. Heat transfer to suspensions of microencapsulated phase change material flowing through minichannels[J]. Journal of Heat Transfer, 2012, 134(2): 1. |
28 | Yang L, Liu S L, Zheng H F. A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109312. |
29 | Chai L, Shaukat R, Wang L, et al. A review on heat transfer and hydrodynamic characteristics of nano/microencapsulated phase change slurry (N/MPCS) in mini/microchannel heat sinks[J]. Applied Thermal Engineering, 2018, 135: 334-349. |
30 | Mahdavi M, Sharifpur M, Meyer J P. CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by Lagrangian and Eulerian approaches[J]. International Journal of Heat and Mass Transfer, 2015, 88: 803-813. |
31 | Maxwell J C A. A treatise on electricity and magnetism[J]. Nature, 1873, 7: 478-480. |
32 | Batchelor G K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles[J]. Journal of Fluid Mechanics, 1977, 83: 97-117. |
33 | Shi X J, Li S, Wei Y D, et al. Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel[J]. International Communications in Heat and Mass Transfer, 2018, 90: 111-120. |
34 | Mohammadpour J, Lee A, Mozafari M, et al. Evaluation of Al2O3-water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian-Lagrangian models[J]. International Journal of Thermal Sciences, 2021, 161: 106705. |
35 | Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55: 193-208. |
36 | Ounis H, Ahmadi G, McLaughlin J B. Brownian diffusion of submicrometer particles in the viscous sublayer[J]. Journal of Colloid and Interface Science, 1991, 143(1): 266-277. |
37 | Mahian O, Kolsi L, Amani M, et al. Recent advances in modeling and simulation of nanofluid flows(part Ⅰ): Fundamentals and theory[J]. Physics Reports, 2019, 790: 1-48. |
38 | Kumari M, Gorla R S R. Natural convection heat and mass transfer from a sphere in non-Newtonian nanofluids[J]. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2014, 228(3): 129-138. |
39 | McNab G S, Meisen A. Thermophoresis in liquids[J]. Journal of Colloid and Interface Science, 1973, 44(2): 339-346. |
40 | Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow[J]. Aerosol Science Technology, 1992, 16(4): 209-226. |
41 | Ranz W E, Marshall W R. Evaporation from drops(part Ⅰ)[J]. Chemical Engineering Progress, 1952, 48(3): 141-148. |
42 | Rao Y, Dammel F, Stephan P, et al. Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels[J]. Heat and Mass Transfer, 2007, 44(2): 175-186. |
43 | Zeng R L, Wang X, Chen B J, et al. Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux[J]. Applied Energy, 2009, 86(12): 2661-2670. |
[1] | 董可豪, 周敬之, 周峰, 陈海家, 淮秀兰, 李栋. 超薄空间复杂边界条件下气体流动压降实验[J]. 化工学报, 2024, 75(7): 2505-2521. |
[2] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[3] | 赵赫, 费滢洁, 朱春英, 付涛涛, 马友光. 高黏体系中纳米颗粒稳定气泡的形变及破裂行为[J]. 化工学报, 2024, 75(6): 2180-2189. |
[4] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[5] | 黄斌, 丰生杰, 傅程, 张威. 液滴撞击单丝铺展特性的数值研究[J]. 化工学报, 2024, 75(6): 2233-2242. |
[6] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[7] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[8] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[9] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[10] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[11] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[12] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[13] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
[14] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[15] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||