化工学报 ›› 2024, Vol. 75 ›› Issue (11): 4217-4225.DOI: 10.11949/0438-1157.20240457
收稿日期:
2024-04-25
修回日期:
2024-05-26
出版日期:
2024-11-25
发布日期:
2024-12-26
通讯作者:
苏远海
作者简介:
钟子豪(1999—),男,硕士研究生,z395598971@sjtu.edu.cn
基金资助:
Zihao ZHONG(), Sai'er LIU, Minjing SHANG, Yuanhai SU(
)
Received:
2024-04-25
Revised:
2024-05-26
Online:
2024-11-25
Published:
2024-12-26
Contact:
Yuanhai SU
摘要:
微型连续搅拌反应器(CSTR)作为一种新型主动式强化微反应器,具有较强的处理涉固反应体系的能力。构建了一套基于磁力搅拌、总体积为3 ml且由16个微圆槽串联而成的微型CSTR,通过停留时间分布测量和Villermaux-Dushman快速平行竞争反应实验对其流动特征以及微观混合性能进行探究。研究结果显示,对于该微型CSTR,流速和转速对其返混程度只有较小的影响,Peclet数(Pe)整体维持在20~30之间,返混程度略高于传统管式微反应器,但仍属较低。微型CSTR微观混合效率优于管式微反应器,尤其是在低流速时,其混合效率远高于管式微反应器。进一步通过团聚模型计算获得该微型CSTR的特征混合时间,其值处于0.5~1.0 ms之间。
中图分类号:
钟子豪, 刘塞尔, 商敏静, 苏远海. 基于磁力搅拌的微型CSTR流动特征及微观混合性能[J]. 化工学报, 2024, 75(11): 4217-4225.
Zihao ZHONG, Sai'er LIU, Minjing SHANG, Yuanhai SU. Flow characteristics and micromixing performance of micro-CSTR with magnetic stirring[J]. CIESC Journal, 2024, 75(11): 4217-4225.
图1 微型CSTR整体(a)、上盖板(b)、下盖板(c)示意图以及微型CSTR实物图(d)
Fig.1 Micro-CSTR overall (a), upper cover plate (b), lower cover plate (c), schematic diagram and physical diagram of micro-CSTR reactor (d)
Entry | Reactor system | Rotary speed /(r/min) | Flow rate / (ml/min) | Mean residence time/s | Pe | N | ||
---|---|---|---|---|---|---|---|---|
Theoretical | Experimental | |||||||
1 | micro-CSTR | 1000 | 0.8 | 240.00 | 222.80 | 0.0941 | 20.20 | 10.6 |
2 | 1000 | 1.2 | 160.00 | 167.68 | 0.0839 | 22.78 | 11.9 | |
3 | 1000 | 1.6 | 120.00 | 123.10 | 0.0842 | 22.71 | 11.9 | |
4 | 1000 | 2 | 96.00 | 106.13 | 0.0798 | 24.02 | 12.5 | |
5 | 1000 | 2.4 | 80.00 | 86.56 | 0.0812 | 23.58 | 12.3 | |
6 | 1000 | 2.8 | 68.00 | 69.83 | 0.0804 | 23.83 | 12.4 | |
7 | 0 | 1.6 | 120.00 | 133.04 | 0.0694 | 27.79 | 14.4 | |
8 | 200 | 1.6 | 120.00 | 138.43 | 0.0729 | 26.41 | 13.7 | |
9 | 600 | 1.6 | 120.00 | 136.34 | 0.0820 | 23.33 | 12.2 | |
10 | 800 | 1.6 | 120.00 | 134.60 | 0.0844 | 22.66 | 11.8 | |
11 | capillary microreactor | — | 0.8 | 382.00 | 369.55 | 0.0238 | 82.93 | — |
12 | — | 1.6 | 191.00 | 192.04 | 0.0584 | 33.19 | — | |
13 | — | 2.4 | 127.00 | 143.27 | 0.0804 | 23.84 | — |
表1 停留时间分布测定数据
Table 1 Residence time distribution measurement data
Entry | Reactor system | Rotary speed /(r/min) | Flow rate / (ml/min) | Mean residence time/s | Pe | N | ||
---|---|---|---|---|---|---|---|---|
Theoretical | Experimental | |||||||
1 | micro-CSTR | 1000 | 0.8 | 240.00 | 222.80 | 0.0941 | 20.20 | 10.6 |
2 | 1000 | 1.2 | 160.00 | 167.68 | 0.0839 | 22.78 | 11.9 | |
3 | 1000 | 1.6 | 120.00 | 123.10 | 0.0842 | 22.71 | 11.9 | |
4 | 1000 | 2 | 96.00 | 106.13 | 0.0798 | 24.02 | 12.5 | |
5 | 1000 | 2.4 | 80.00 | 86.56 | 0.0812 | 23.58 | 12.3 | |
6 | 1000 | 2.8 | 68.00 | 69.83 | 0.0804 | 23.83 | 12.4 | |
7 | 0 | 1.6 | 120.00 | 133.04 | 0.0694 | 27.79 | 14.4 | |
8 | 200 | 1.6 | 120.00 | 138.43 | 0.0729 | 26.41 | 13.7 | |
9 | 600 | 1.6 | 120.00 | 136.34 | 0.0820 | 23.33 | 12.2 | |
10 | 800 | 1.6 | 120.00 | 134.60 | 0.0844 | 22.66 | 11.8 | |
11 | capillary microreactor | — | 0.8 | 382.00 | 369.55 | 0.0238 | 82.93 | — |
12 | — | 1.6 | 191.00 | 192.04 | 0.0584 | 33.19 | — | |
13 | — | 2.4 | 127.00 | 143.27 | 0.0804 | 23.84 | — |
图3 不同流速下微型CSTR(a)和管式微反应器(b)停留时间分布函数
Fig.3 Function of residence time distribution in different flow rate in micro-CSTR (a) and capillary microreactor (b)
图7 微型CSTR反应器和传统管式微反应器内微观混合时间tm与离集指数Xs的关系
Fig.7 Relationship between microscopic mixing time tm and off-set index Xs in micro-CSTR reactors and conventional tubular reactors
1 | Jähnisch K, Hessel V, Löwe H, et al. Chemistry in microstructured reactors[J]. Angewandte Chemie (International Ed. in English), 2004, 43(4): 406-446. |
2 | Jas G, Kirschning A. Continuous flow techniques in organic synthesis[J]. Chemistry-A European Journal, 2003, 9(23): 5708-5723. |
3 | Malet-Sanz L, Susanne F. Continuous flow synthesis. A pharma perspective[J]. Journal of Medicinal Chemistry, 2012, 55(9): 4062-4098. |
4 | Hughes D L. Applications of flow chemistry in drug development: highlights of recent patent literature [J]. Organic Process Research & Development, 2018, 22(1): 13-20. |
5 | Stueckler C, Hermsen P, Ritzen B, et al. Development of a continuous flow process for a matteson reaction: from lab scale to full-scale production of a pharmaceutical intermediate [J]. Organic Process Research & Development, 2019, 23(5): 1069-1077. |
6 | Zong J, Yue J. Continuous solid particle flow in microreactors for efficient chemical conversion[J]. Industrial & Engineering Chemistry Research, 2022, 61(19): 6269-6291. |
7 | Henry C, Minier J P, Lefèvre G. Towards a description of particulate fouling: from single particle deposition to clogging [J]. Advances in Colloid and Interface Science, 2012, 185/186: 34-76. |
8 | Liedtke A K, Bornette F, Philippe R, et al. Gas-liquid-solid "slurry taylor" flow: experimental evaluation through the catalytic hydrogenation of 3-methyl-1-pentyn-3-ol[J]. Chemical Engineering Journal, 2013, 227: 174-181. |
9 | Zhao S N, Yao C Q, Dong Z Y, et al. Role of ultrasonic oscillation in chemical processes in microreactors: a mesoscale issue[J]. Particuology, 2020, 48: 88-99. |
10 | Bannock J H, Krishnadasan S H, Nightingale A M, et al. Continuous synthesis of device-grade semiconducting polymers in droplet-based microreactors[J]. Advanced Functional Materials, 2013, 23(17): 2123-2129. |
11 | Noël T, Naber J R, Hartman R L, et al. Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging via acoustic irradiation[J]. Chemical Science, 2011, 2(2): 287-290. |
12 | Hartman R L, Naber J R, Zaborenko N, et al. Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C—N bond formation in microreactors [J]. Organic Process Research & Development, 2010, 14(6): 1347-1357. |
13 | Khan S A, Günther A, Schmidt M A, et al. Microfluidic synthesis of colloidal silica [J]. Langmuir, 2004, 20(20): 8604-8611. |
14 | Khan S A, Jensen K F. Microfluidic synthesis of titania shells on colloidal silica [J]. Advanced Materials, 2007, 19(18): 2556-2560. |
15 | 董正亚, 陈光文, 赵帅南, 等. 声化学微反应器——超声和微反应器协同强化[J]. 化工学报, 2018, 69(1): 102-115. |
Dong Z Y, Chen G W, Zhao S N, et al. Sonochemical microreactor-synergistic intensification of ultrasound and microreactor[J]. CIESC Journal, 2018, 69(1): 102-115. | |
16 | Mo Y M, Jensen K F. A miniature CSTR cascade for continuous flow of reactions containing solids[J]. Reaction Chemistry & Engineering, 2016, 1(5): 501-507. |
17 | Pomberger A, Mo Y M, Nandiwale K Y, et al. A continuous stirred-tank reactor (CSTR) cascade for handling solid-containing photochemical reactions[J]. Organic Process Research & Development, 2019, 23(12): 2699-2706. |
18 | Hopley A, Doyle B J, Roberge D M, et al. Residence time distribution in coil and plate micro-reactors[J]. Chemical Engineering Science, 2019, 207: 181-193. |
19 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
20 | Othman R, Vladisavljević G T, Hemaka Bandulasena H C, et al. Production of polymeric nanoparticles by micromixing in a co-flow microfluidic glass capillary device[J]. Chemical Engineering Journal, 2015, 280: 316-329. |
21 | Xu C, Zhong Y J, Zheng Y N, et al. Micromixing-assisted preparation of TiO2 films from ammonium hexafluorotitanate and urea by liquid phase deposition based on simulation of mixing process in T-shaped micromixer[J]. Ceramics International, 2019, 45(9): 11325-11334. |
22 | Chang Y J, Mugdur P, Han S Y, et al. Nanocrystalline CdS MISFETs fabricated by a novel continuous flow microreactor [J]. Electrochemical and Solid State Letters, 2006, 9(5): 174. |
23 | Lobasov A S, Minakov A V, Kuznetsov V V, et al. Investigation of mixing efficiency and pressure drop in T-shaped micromixers [J]. Chemical Engineering and Processing-Process Intensification, 2018, 134: 105-114. |
24 | 骆广生, 徐建鸿, 陈桂光, 等. 微结构设备内液-液均相混合性能研究进展[J]. 现代化工, 2005, 25(11): 19-23. |
Luo G S, Xu J H, Chen G G, et al. Advances in research of liquid-liquid homogeneous mixing performance in micro-structured devices[J]. Modern Chemical Industry, 2005, 25(11): 19-23. | |
25 | Rahimi M, Aghel B, Hatamifar B, et al. CFD modeling of mixing intensification assisted with ultrasound wave in a T-type microreactor [J]. Chemical Engineering and Processing: Process Intensification, 2014, 86: 36-46. |
26 | Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency—experimental approach[J]. Chemical Engineering Science, 1996, 51(22): 5053-5064. |
27 | Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency—determination of micromixing time by a simple mixing model[J]. Chemical Engineering Science, 1996, 51(23): 5187-5192. |
28 | Reis M H, Varner T P, Leibfarth F A. The influence of residence time distribution on continuous-flow polymerization[J]. Macromolecules, 2019, 52(9): 3551-3557. |
29 | Wong S H, Ward M C L, Wharton C W. Micro T-mixer as a rapid mixing micromixer[J]. Sensors and Actuators B: Chemical, 2004, 100(3): 359-379. |
30 | Hoffmann M, Schlüter M, Räbiger N. Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV[J]. Chemical Engineering Science, 2006, 61(9): 2968-2976. |
[1] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[2] | 蒋晓煜, 雒焕婷, 洪瑞, 杜文静. 调制差示扫描量热法测定二元醇型冷却液的比热容[J]. 化工学报, 2024, 75(S1): 40-46. |
[3] | 杨子驰, 谢冰琪, 石瑞莘, 雷虹, 陈晨, 周才金, 张吉松. 套管膜式微反应器内高效安全的气液传质-反应过程研究进展[J]. 化工学报, 2024, 75(9): 3011-3027. |
[4] | 胡军勇, 胡亚丽, 谭学诣, 黄佳欣, 张乐炜, 曾俊立, 刘晓奕, 陶源. 基于LiCl-NH4Cl水溶液多级逆电渗析性能的实验研究[J]. 化工学报, 2024, 75(7): 2670-2679. |
[5] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[6] | 徐嘉宇, 陈飞国, 徐骥, 葛蔚. 颗粒体系的多尺度混合指数[J]. 化工学报, 2024, 75(6): 2214-2221. |
[7] | 黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312. |
[8] | 苏彬, 董浩伟, 罗振敏, 邓军, 王涛, 程方明. 气粉两相体系爆炸动力学特性及机理研究进展[J]. 化工学报, 2024, 75(6): 2109-2122. |
[9] | 何宇航, 谢丹, 吕阳成. 微反应器内阳离子聚合研究进展[J]. 化工学报, 2024, 75(4): 1302-1316. |
[10] | 薛潇, 商敏静, 苏远海. 微反应器内药物连续流合成的研究进展[J]. 化工学报, 2024, 75(4): 1439-1454. |
[11] | 李宁, 朱朋飞, 张立峰, 卢栋臣. 基于非凸与不可分离正则化算法的电容层析成像图像重建[J]. 化工学报, 2024, 75(3): 836-846. |
[12] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[13] | 徐百平, 梁瑞凤, 喻慧文, 吴桂群, 肖书平. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
[14] | 陈饶, 赵鑫, 陈戴欣, 姜圣坤, 廉应江, 王金波, 杨梅, 陈光文. 微反应器内甲苯连续二硝化制备二硝基甲苯[J]. 化工学报, 2024, 75(3): 867-876. |
[15] | 屠楠, 刘晓群, 王驰宇, 方嘉宾. 连续进出料鼓泡流化床停留时间分布的相似准则研究[J]. 化工学报, 2024, 75(2): 543-552. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 165
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||