化工学报 ›› 2025, Vol. 76 ›› Issue (2): 454-465.DOI: 10.11949/0438-1157.20240576
徐艳焦(), 楼琳瑾(
), 樊茁钦, 张浩淼(
), 王靖岱, 阳永荣
收稿日期:
2024-05-30
修回日期:
2024-07-02
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
张浩淼
作者简介:
徐艳焦(2001—),女,硕士研究生,yanjiaoxu@zju.edu.cn基金资助:
Yanjiao XU(), Linjin LOU(
), Zhuoqin FAN, Haomiao ZHANG(
), Jingdai WANG, Yongrong YANG
Received:
2024-05-30
Revised:
2024-07-02
Online:
2025-02-25
Published:
2025-03-10
Contact:
Haomiao ZHANG
摘要:
甲基铝氧烷(MAO)是多种烯烃聚合体系的重要助催化剂,但其生产难度大、经济性差,并且在脂肪烃溶剂中溶解度低、稳定性差,因此,通过对MAO改性克服上述问题具有重要研究价值。针对MAO改性的主要技术路线,综述了水解法、非水解法及其他改性策略,并重点介绍基于3D打印技术的改性甲基铝氧烷(MMAO)流动化学反应器设计和合成方法。该MMAO连续流合成平台包括异丁基铝氧烷(IBAO)合成模块、IBAO与三甲基铝(TMA)快速络合模块以及异丁基改性产品iBu-MMAO合成模块,通过有效降低固体堵塞和热失控的风险,实现安全、稳定、连续合成MMAO,收率最高可达80%,且该产品与市售产品的助催化活性相当。在此基础上,综述了MMAO的分析与检测手段,及其系列产品在聚合体系中的应用,为MMAO的合成及应用提供理论支持与技术指导。
中图分类号:
徐艳焦, 楼琳瑾, 樊茁钦, 张浩淼, 王靖岱, 阳永荣. 甲基铝氧烷的改性技术研究进展[J]. 化工学报, 2025, 76(2): 454-465.
Yanjiao XU, Linjin LOU, Zhuoqin FAN, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on modification technology of methylaluminoxane[J]. CIESC Journal, 2025, 76(2): 454-465.
1 | Ammala A, Bateman S, Dean K, et al. An overview of degradable and biodegradable polyolefins[J]. Progress in Polymer Science, 2011, 36(8): 1015-1049. |
2 | Chen E Y, Marks T J. Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships[J]. Chemical Reviews, 2000, 100(4): 1391-1434. |
3 | Sauter D W, Taoufik M, Boisson C. Polyolefins, a success story[J]. Polymers, 2017, 9(6): 185. |
4 | Zijlstra H S, Harder S. Methylalumoxane—history, production, properties, and applications[J]. European Journal of Inorganic Chemistry, 2015, 2015(1): 19-43. |
5 | Sarzotti D M, Marshman D J, Ripmeester W E, et al. A kinetic study of metallocene-catalyzed ethylene polymerization using different aluminoxane cocatalysts[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(9): 1677-1690. |
6 | Glaser R, Sun X S. Thermochemistry of the initial steps of methylaluminoxane formation. Aluminoxanes and cycloaluminoxanes by methane elimination from dimethylaluminum hydroxide and its dimeric aggregates[J]. Journal of the American Chemical Society, 2011, 133(34): 13323-13336. |
7 | Zijlstra H S, Collins S, McIndoe J S. Oxidation of methylalumoxane oligomers[J]. Chemistry, 2018, 24(21): 5506-5512. |
8 | Sinn H. Proposals for structure and effect of methylalumoxane based on mass balances and phase separation experiments[J]. Macromolecular Symposia, 1995, 97(1): 27-52. |
9 | Negureanu L, Hall R W, Butler L G, et al. Methyaluminoxane (MAO) polymerization mechanism and kinetic model from ab initio molecular dynamics and electronic structure calculations[J]. Journal of the American Chemical Society, 2006, 128(51): 16816-16826. |
10 | Pédeutour J N, Radhakrishnan K, Cramail H, et al. Reactivity of metallocene catalysts for olefin polymerization: influence of activator nature and structure[J]. Macromolecular Rapid Communications, 2001, 22(14): 1095. |
11 | Andresen A, Cordes H G, Herwig J, et al. Halogenfreie lösliche Ziegler-Katalysatoren für die Ethylen-Polymerisation. Regelung des Molekulargewichtes durch Wahl der Reaktionstemperatur[J]. Angewandte Chemie, 1976, 88(20): 689-690. |
12 | Zijlstra H S, Joshi A, Linnolahti M, et al. Modifying methylalumoxane via alkyl exchange[J]. Dalton Transactions, 2018, 47(48): 17291-17298. |
13 | Roberg J K, Burt E A. High yield aluminoxane synthesis process: US5663394A[P]. 1997-09-02. |
14 | Zijlstra H S, Stuart M C A, Harder S. Structural investigation of methylalumoxane using transmission electron microscopy[J]. Macromolecules, 2015, 48(15): 5116-5119. |
15 | Bryliakov K P, Talsi E P. Frontiers of mechanistic studies of coordination polymerization and oligomerization of α-olefins[J]. Coordination Chemistry Reviews, 2012, 256(23/24): 2994-3007. |
16 | Ehm C, Cipullo R, Budzelaar P H M, et al. Role(s) of TMA in polymerization[J]. Dalton Transactions, 2016, 45(16): 6847-6855. |
17 | Tanaka R. Precise control of coordination polymerization via the modification of methylaluminoxane (MAO)[J]. Polymer Journal, 2020, 52(7): 661-670. |
18 | Crapo C C, Malpass D B. Synthesis of methylaluminoxanes: US4960878A[P]. 1990-10-02. |
19 | Kissin Y V, Brandolini A J. An alternative route to methylalumoxane: synthesis, structure, and the use of model methylalumoxanes as cocatalysts for transition metal complexes in polymerization reactions[J]. Macromolecules, 2003, 36(1): 18-26. |
20 | Tanaka R, Hirose T, Nakayama Y, et al. The preparation of boron-containing aluminoxanes and their application as cocatalysts in the polymerization of olefins[J]. Polymer Journal, 2016, 48(1): 67-71. |
21 | Sangokoya S A. Amino-aluminoxane compositions: US5371260A[P]. 1994-12-06. |
22 | Sangokoya S A. Aluminoxanes having increased catalytic activity: EP0645393B1[P]. 2000-01-05. |
23 | Brantley N H, Beard W R. Methylaluminoxane compositions, enriched solutions of such compositions, and the preparation thereof: US6518445[P]. 2003-02-11. |
24 | Bravaya N M, Panin A N, Faingol'd E E, et al. Isobutylalumoxanes as high-performance activators of rac-Et(2-MeInd)2ZrMe2 in copolymerization of ethylene with propylene and ternary copolymerization of ethylene, propylene, and 5-ethylidene-2-norbornene[J]. Polymer Bulletin, 2016, 73(2): 473-491. |
25 | Henderson M A, Trefz T K, Collins S, et al. Characterization of isobutylaluminoxanes by electrospray ionization mass spectrometry[J]. Organometallics, 2013, 32(7): 2079-2083. |
26 | 吴江. 甲基铝氧烷合成技术研究[D]. 兰州: 兰州大学, 2007. |
Wu J. Study in synthetic technology of methylaluminoxane[D]. Lanzhou: Lanzhou University, 2007. | |
27 | Tran N H, Deavenport D L, Malpass D B, et al. Polymethylaluminoxane of enhanced solution stability: US5329032A[P]. 1994-07-12. |
28 | Sangokoya S A, Wiegand K E. Production of hydrocarbon-soluble hydrocarbylaluminoxanes: US5847177A[P]. 1998-12-08. |
29 | Babushkin D E, Brintzinger H H. Modification of methylaluminoxane-activated ansa-zirconocene catalysts with triisobutylaluminum-transformations of reactive cations studied by NMR spectroscopy[J]. Chemistry, 2007, 13(18): 5294-5299. |
30 | Kleinschmidt R, van der Leek Y, Reffke M, et al. Kinetics and mechanistic insight into propylene polymerization with different metallocenes and various aluminium alkyls as cocatalysts[J]. Journal of Molecular Catalysis A: Chemical, 1999, 148(1/2): 29-41. |
31 | Ioku A, Hasan T, Shiono T, et al. Effects of cocatalysts on propene polymerization with [t-BuNSiMe2(C5Me4)]TiMe2 [J]. Macromolecular Chemistry and Physics, 2002, 203(4): 748-755. |
32 | Feng Y R, Zhang M B, Zhang H M, et al. Continuous synthesis of isobutylaluminoxanes in a compact and integrated approach[J]. Chemical Engineering Journal, 2021, 425: 131750. |
33 | Welborn H C. Metallocene, hydrocarbylaluminum and hydrocarbylboroxine olefin polymerization catalyst: US5001244A [P]. 1991-03-19. |
34 | Richter B, Meetsma A, Hessen B, et al. Synthesis and structural characterisation of a boralumoxane capable of activating a zirconocene ethene polymerisation catalyst[J]. Chemical Communications, 2001(14): 1286-1287. |
35 | Smith G M, Malpass D B, Palmaka S W. Modified polyalkylaluminoxane composition formed using reagent containing aluminum trialkyl siloxide: EP0818456B1[P]. 2003-04-02. |
36 | Malpass D B, Palmaka S W, Smith G M, et al. Hydrocarbon soluble alkylaluminoxane compositions formed by use of non-hydrolytic means: US5777143A[P]. 1998-07-07. |
37 | Smith G M, Palmaka S W, Rogers J S, et al. Polyalkylaluminoxane compositions formed by non-hydrolytic means: TW581768B [P]. 2004-04-01. |
38 | Sangokoya S A. Liquid clathrate aluminoxane compositions as co-catalysts with transition metal catalyst compounds: US5922631[P]. 1999-07-13. |
39 | Luo L B, Sangokoya S A, Diefenbach S P, et al. Haloaluminoxane compositions, their preparation, and their use in catalysis: US20060287448A1[P]. 2008-04-08. |
40 | Zhang M B, Feng Y R, Lou L J, et al. Flow toolkit for measuring reaction enthalpy and application to highly exothermic synthesis of alkylaluminoxanes[J]. Organic Process Research & Development, 2022, 26(5): 1506-1513. |
41 | 张春英, 王萍, 郑翔, 等. 铝氧烷的制备方法: 111454285A[P]. 2020-07-28. |
Zhang C Y, Wang P, Zheng X, et al. Preparation method of aluminoxane: 111454285A[P]. 2020-07-28. | |
42 | Zhang M B, Lou L J, Feng Y R, et al. A two-stage flow strategy for the synthesis of isobutyl-modified methylaluminoxane[J]. Reaction Chemistry & Engineering, 2023, 8(4): 763-769. |
43 | Au A K, Huynh W, Horowitz L F, et al. 3D-printed microfluidics[J]. Angewandte Chemie International Edition, 2016, 55(12): 3862-3881. |
44 | Wegner J, Ceylan S, Kirschning A. Flow chemistry—a key enabling technology for (multistep) organic synthesis[J]. Advanced Synthesis & Catalysis, 2012, 354(1): 17-57. |
45 | Whitesides G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373. |
46 | Tabeling P. Introduction to Microfluidics[M]. Oxford: Oxford University Press, 2023. |
47 | Feng Y R, Wang J, Zhang H M, et al. A 3D-printed continuous flow platform for the synthesis of methylaluminoxane[J]. Green Chemistry, 2021, 23(11): 4087-4094. |
48 | Zhu Z, Yang C J. Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis[J]. Accounts of Chemical Research, 2017, 50(1): 22-31. |
49 | Shang L R, Cheng Y, Zhao Y J. Emerging droplet microfluidics[J]. Chemical Reviews, 2017, 117(12): 7964-8040. |
50 | Watts P, Haswell S J. The application of micro reactors for organic synthesis[J]. Chemical Society Reviews, 2005, 34(3): 235-246. |
51 | Eilertsen J L, Rytter E, Ystenes M. In situ FTIR spectroscopy during addition of trimethylaluminium (TMA) to methylaluminoxane (MAO) shows no formation of MAO-TMA compounds[J]. Vibrational Spectroscopy, 2000, 24(2): 257-264. |
52 | Lacroix K V, Heitmann B, Sinn H. Behaviour of differently produced methylalumoxanes in the phase separation with diethyl ether and molecular weight estimations[J]. Macromolecular Symposia, 1995, 97(1): 137-142. |
53 | Hagendorf W, Harder A, Sinn H. Phase separation of methylalumoxane with diethyl ether[J]. Macromolecular Symposia, 1995, 97(1): 127-136. |
54 | Imhoff D W, Simeral L S, Sangokoya S A, et al. Characterization of methylaluminoxanes and determination of trimethylaluminum using proton NMR[J]. Organometallics, 1998, 17(10): 1941-1945. |
55 | Tanaka R, Kawahara T, Shinto Y, et al. An alternative method for the preparation of trialkylaluminum-depleted modified methylaluminoxane (dMMAO)[J]. Macromolecules, 2017, 50(15): 5989-5993. |
56 | Jordan D E. Visual titrimetric determination of total reactivity and differentiation of trialkylaluminum and dialkylaluminum hydride in mixtures[J]. Analytical Chemistry, 1968, 40(14): 2150-2153. |
57 | Thorn-Csányi E, Dehmel J, Halle O, et al. UV/Vis-spektroskopischer Nachweis einer selektiven Komplexbildung zwischen WOCl4 und trimethylaluminium. Ein weg zur Charakterisierung von methylaluminoxanen[J]. Macromolecular Chemistry and Physics, 1994, 195(9): 3017-3024. |
58 | Thorn-Csányi E, Dehmel J, Dahlke B. Development of a method for the determination of the “free” trimethylaluminum content in methylalumoxane[J]. Macromolecular Symposia, 1995, 97(1): 91-99. |
59 | Barron A R. New method for the determination of the trialkylaluminum content in alumoxanes[J]. Organometallics, 1995, 14(7): 3581-3583. |
60 | Ghiotto F, Pateraki C, Tanskanen J, et al. Probing the structure of methylalumoxane (MAO) by a combined chemical, spectroscopic, neutron scattering, and computational approach[J]. Organometallics, 2013, 32(11): 3354-3362. |
61 | Trefz T K, Henderson M A, Wang M Y, et al. Mass spectrometric characterization of methylaluminoxane[J]. Organometallics, 2013, 32(11): 3149-3152. |
62 | Babushkin D E, Semikolenova N V, Panchenko V N, et al. Multinuclear NMR investigation of methylaluminoxane[J]. Macromolecular Chemistry and Physics, 1997, 198(12): 3845-3854. |
63 | Bryliakov K P, Semikolenova N V, Panchenko V N, et al. Activation of rac-Me2Si(Ind)2ZrCl2 by methylalumoxane modified by aluminum alkyls: an EPR spin-probe, 1H NMR, and polymerization study[J]. Macromolecular Chemistry and Physics, 2006, 207(3): 327-335. |
64 | Joshi A, Zijlstra H S, Collins S, et al. Catalyst deactivation processes during 1-hexene polymerization[J]. ACS Catalysis, 2020, 10(13): 7195-7206. |
65 | Joshi A, Collins S, Linnolahti M, et al. Spectroscopic studies of synthetic methylaluminoxane: structure of methylaluminoxane activators [J]. Chemistry, 2021, 27(34): 8753-8763. |
66 | Collins S, Joshi A, Linnolahti M. Formation and structure of hydrolytic methylaluminoxane activators[J]. Chemistry, 2021, 27(62): 15460-15471. |
67 | Joshi A, Zijlstra H S, Liles E, et al. Real-time analysis of methylalumoxane formation[J]. Chemical Science, 2020, 12: 546-551. |
68 | Luo L B, Younker J M, Zabula A V. Structure of methylaluminoxane (MAO): extractable [Al(CH3)2]+ for precatalyst activation[J]. Science, 2024, 384(6703): 1424-1428. |
69 | Soares J B P, Hamielec A E. Bivariate chain length and long chain branching distribution for copolymerization of olefins and polyolefin chains containing terminal double-bonds[J]. Macromolecular Theory and Simulations, 1996, 5(3): 547-572. |
70 | Tritto I, Sacchi M C, Locatelli P, et al. Low-temperature 1H and 13C NMR investigation of trimethylaluminium contained in methylaluminoxane cocatalyst for metallocene-based catalysts in olefin polymerization[J]. Macromolecular Chemistry and Physics, 1996, 197(4): 1537-1544. |
71 | Soshnikov I E, Semikolenova N V, Bryliakov K P, et al. Nature of heterobinuclear Ni(Ⅰ) complexes formed upon the activation of the α - d i i m i n e complex LNiⅡBr2 with AlMe3 and MMAO[J]. Organometallics, 2021, 40(7): 907-914. |
72 | Khoshsefat M, Ma Y, Sun W H. Multinuclear late transition metal catalysts for olefin polymerization[J]. Coordination Chemistry Reviews, 2021, 434: 213788. |
73 | Bollmann A, Blann K, Dixon J T, et al. Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities[J]. Journal of the American Chemical Society, 2004, 126(45): 14712-14713. |
74 | Overett M J, Blann K, Bollmann A, et al. Mechanistic investigations of the ethylene tetramerisation reaction[J]. Journal of the American Chemical Society, 2005, 127(30): 10723-10730. |
75 | van Leeuwen P W N M, Clément N D, Tschan M J L. New processes for the selective production of 1-octene[J]. Coordination Chemistry Reviews, 2011, 255(13/14): 1499-1517. |
76 | Hao B B, Alam F, Jiang Y, et al. Selective ethylene tetramerization: an overview[J]. Inorganic Chemistry Frontiers, 2023, 10(10): 2860-2902. |
77 | Jabri A, Mason C, Sim Y, et al. Isolation of single-component trimerization and polymerization chromium catalysts: the role of the metal oxidation state[J]. Angewandte Chemie International Edition, 2008, 47(50): 9717-9721. |
78 | Ruiz-Orta C, Fernandez-Blazquez J P, Anderson-Wile A M, et al. Isotactic polypropylene with (3, 1) chain-walking defects: characterization, crystallization, and melting behaviors[J]. Macromolecules, 2011, 44(9): 3436-3451. |
79 | Lamb M J, Apperley D C, Watson M J, et al. The role of catalyst support, diluent and co-catalyst in chromium-mediated heterogeneous ethylene trimerisation[J]. Topics in Catalysis, 2018, 61(3): 213-224. |
[1] | 应昕, 杜淼, 潘鹏举, 单国荣. 高折射率聚硫氨酯的合成、结构与性能[J]. 化工学报, 2025, 76(2): 858-867. |
[2] | 殷梦凡, 王倩, 郑涛, 姬奎, 王绍贵, 郭辉, 林志强, 张睿, 孙晖, 刘海燕, 刘植昌, 徐春明, 孟祥海, 王月平. 可再生能源电解水制氢-低温低压合成氨万吨级工业示范流程设计[J]. 化工学报, 2025, 76(2): 825-834. |
[3] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
[4] | 纪之骄, 张晓方, 甘汶, 薛云鹏. 载体对单原子电催化剂合成氨性能的影响与调控策略[J]. 化工学报, 2025, 76(1): 18-39. |
[5] | 宋世萍, 汤晓玲, 郑仁朝. 谷胱甘肽双功能合成酶分子改造及应用[J]. 化工学报, 2024, 75(S1): 251-258. |
[6] | 杨子驰, 谢冰琪, 石瑞莘, 雷虹, 陈晨, 周才金, 张吉松. 套管膜式微反应器内高效安全的气液传质-反应过程研究进展[J]. 化工学报, 2024, 75(9): 3011-3027. |
[7] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[8] | 那雪梅, 王雨, 姜尧竹, 贾男, 王颖, 李春. 异源CYP450酶的表达优化促进工程酿酒酵母合成熊果酸[J]. 化工学报, 2024, 75(7): 2624-2632. |
[9] | 王寅, 初鹏飞, 刘虎, 吕静, 黄守莹, 王胜平, 马新宾. 不同pH铝溶胶对二甲醚羰基化成型丝光沸石催化剂性能的影响[J]. 化工学报, 2024, 75(7): 2533-2543. |
[10] | 张晗, 张淑宁, 刘珂, 邓冠龙. 基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报[J]. 化工学报, 2024, 75(6): 2313-2321. |
[11] | 王成秀, 宋大山, 李之辉, 杨潇, 蓝兴英, 高金森, 徐春明. Geldart C类脱硫灰颗粒在环流耦合提升管内稳定流动特性[J]. 化工学报, 2024, 75(4): 1485-1496. |
[12] | 李昂, 赵振宇, 李洪, 高鑫. 微波诱导高分散Pd/FeP催化剂构筑及其电催化性能研究[J]. 化工学报, 2024, 75(4): 1594-1606. |
[13] | 吴立盛, 刘杰, 王添添, 罗正鸿, 周寅宁. 开环易位烯烃聚合物的动态交联改性研究进展[J]. 化工学报, 2024, 75(4): 1118-1136. |
[14] | 孙涛, 孙美莉, 陆然, 余一梓, 王凯峰, 纪晓俊. 合成生物学改造酵母驱动丁二酸绿色生物制造[J]. 化工学报, 2024, 75(4): 1382-1393. |
[15] | 徐安冉, 刘凯, 王娜, 赵振宇, 李洪, 高鑫. 强吸波催化剂协同微波能强化果糖脱水制5-羟甲基糠醛[J]. 化工学报, 2024, 75(4): 1565-1577. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 288
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 339
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||