化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3452-3463.DOI: 10.11949/0438-1157.20240381
收稿日期:
2024-04-08
修回日期:
2024-06-13
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
陈志豪
作者简介:
田镇岭(1998—),男,硕士研究生,tzl@tju.edu.cn
基金资助:
Zhenling TIAN1(), Zhihao CHEN1,2(
), Yoshio UTAKA1,2
Received:
2024-04-08
Revised:
2024-06-13
Online:
2024-10-25
Published:
2024-11-04
Contact:
Zhihao CHEN
摘要:
基于沸腾现象的浸没式液冷技术适用于芯片(服务器、数据中心等)以及电机冷却等,可实现冷却系统的模块化、集成化和小型化,具有广阔的应用前景。在浸没式液冷系统的开发中,通常希望在不影响系统性能的前提下,尽量减少冷却工质的充填量。提出气泡泵技术,降低冷却系统中液体工质充填量,同时利用沸腾气泡驱动的气液两相上升流作为动力,驱动工质循环冷却整个系统。选取Novec-7100为工质,建立可视化实验系统,针对气泡泵驱动的气液两相流动特性、气液输运性能以及传热性能展开研究。结果表明,所构建的3 mm × 3 mm微通道型气泡泵冷却系统,在120 mm的冷却液浸没高度下实现了所选取参数范围内的最佳性能,可在0.89~9.68 W/m2的热通量范围内实现两相流循环输运。
中图分类号:
田镇岭, 陈志豪, 宇高义郎. 微通道型气泡泵驱动两相流传热特性[J]. 化工学报, 2024, 75(10): 3452-3463.
Zhenling TIAN, Zhihao CHEN, Yoshio UTAKA. Study on two-phase flow heat transfer characteristics driven by microchannel bubble pump[J]. CIESC Journal, 2024, 75(10): 3452-3463.
截面尺寸/(mm×mm) | 长度/mm | 通道数 |
---|---|---|
1 × 1 | 240 | 10 |
2 × 2 | 240 | 6 |
3 × 3 | 240 | 5 |
表1 气泡泵尺寸
Table 1 Bubble pump size
截面尺寸/(mm×mm) | 长度/mm | 通道数 |
---|---|---|
1 × 1 | 240 | 10 |
2 × 2 | 240 | 6 |
3 × 3 | 240 | 5 |
参数 | 范围 | 最大相对不确定度/% | 参数 | 范围 | 最大相对不确定度/% |
---|---|---|---|---|---|
流路面积A | (5250 ± 13.6) mm2 | 0.3 | 进口流量Vi | 0~3.0 ml/s | 6.4 |
电流I | 0.24~2.80 A | 4.2 | 液体蒸发量Veva | 0~3.0 ml/s | 5.3 |
电压U | 30~200 V | 3.3 | 壁面过热度ΔT | 1.5~20.0℃ | 6.7 |
流量测定时间t | 1.00~40.00 s | 1.0 | 热通量q | 0~9.98 W/cm2 | 5.3 |
流量测定体积V | (3.0 ± 0.1) ml | 3.3 | 传热系数α | 0~8 kW/(cm2·K) | 8.5 |
出口流量Ve | 0~2.0 ml/s | 3.5 | 泵送高度h | 0~180 mm | 2.8 |
表2 实验不确定度
Table 2 Experimental uncertainties
参数 | 范围 | 最大相对不确定度/% | 参数 | 范围 | 最大相对不确定度/% |
---|---|---|---|---|---|
流路面积A | (5250 ± 13.6) mm2 | 0.3 | 进口流量Vi | 0~3.0 ml/s | 6.4 |
电流I | 0.24~2.80 A | 4.2 | 液体蒸发量Veva | 0~3.0 ml/s | 5.3 |
电压U | 30~200 V | 3.3 | 壁面过热度ΔT | 1.5~20.0℃ | 6.7 |
流量测定时间t | 1.00~40.00 s | 1.0 | 热通量q | 0~9.98 W/cm2 | 5.3 |
流量测定体积V | (3.0 ± 0.1) ml | 3.3 | 传热系数α | 0~8 kW/(cm2·K) | 8.5 |
出口流量Ve | 0~2.0 ml/s | 3.5 | 泵送高度h | 0~180 mm | 2.8 |
1 | 包云皓, 陈建业, 邵双全. 数据中心高效液冷技术研究现状[J]. 制冷与空调, 2023, 23(10): 58-69. |
Bao Y H, Chen J Y, Shao S Q. Research status of high-efficient liquid cooling technology in data center [J]. Refrigeration and Air-Conditioning, 2023, 23(10): 58-69. | |
2 | Wang H J, Yuan X J, Zhang K, et al. Performance evaluation and optimization of data center servers using single-phase immersion cooling[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125057. |
3 | Gajjar K, Huang H P. Conjugate heat transfer for single phase immersion cooling of CPU[J]. Case Studies in Thermal Engineering, 2023, 52: 103728. |
4 | Liu S C, Xu Z M, Wang Z M, et al. Optimization and comprehensive evaluation of liquid cooling tank for single-phase immersion cooling data center[J]. Applied Thermal Engineering, 2024, 245: 122864. |
5 | 梁俣, 刘道平, 叶鹏. 气泡泵在制冷技术中的应用研究进展[J]. 制冷学报, 2014, 35(1): 58-65. |
Liang Y, Liu D P, Ye P. Research progress of bubble pump in refrigeration application [J]. Journal of Refrigeration, 2014, 35(1): 58-65. | |
6 | Gurevich B, Zohar A. Numerical research of a solar driven bubble pump for diffusion absorption refrigeration systems[J]. Defect and Diffusion Forum, 2021, 412: 27-36. |
7 | Jiang W, Lyu P Z, Liu X J, et al. An immersion flow boiling heat dissipation strategy for efficient battery thermal management in non-steady conditions[J]. Applied Thermal Engineering, 2024, 245: 122783. |
8 | 王伟, 吕松浩, 黎汉华. 一种部分浸没式液冷服务器冷却系统: 106445037B[P]. 2023-10-24. |
Wang W, Lyu S H, Li H H. A partially submerged type system for liquid cooling server: 106445037B[P]. 2023-10-24. | |
9 | 郑亮, 郑洪斌, 陈以乐, 等. 小型数据中心混合冷却系统节能改造探究[J]. 莆田学院学报, 2023, 30(5): 94-101. |
Zheng L, Zheng H B, Chen Y L, et al. Research on energy-saving renovation of hybrid cooling system in small data center[J]. Journal of Putian University, 2023, 30(5): 94-101. | |
10 | Aman J, Henshaw P, Ting D S K. Performance characterization of a bubble pump for vapor absorption refrigeration systems[J]. International Journal of Refrigeration, 2018, 85: 58-69. |
11 | Gao H T, Liu B B, Yan Y Y. Numerical simulation of bubbles motion in lifting pipe of bubble pump for lithium bromide absorption chillers[J]. Applied Thermal Engineering, 2017, 115: 1398-1406. |
12 | Ren X H, Tan Y Y. Research progress of diffusion absorption refrigeration technology[J]. Applied Mechanics and Materials, 2012, 238: 209-213. |
13 | 段文利. 加热方式对气泡泵提升性能影响的研究[J]. 制冷与空调(四川), 2022, 36(6): 828-834. |
Duan W L. Research on the effect of heating method about the lifting performance of bubble pump[J]. Refrigeration & Air Conditioning, 2022, 36(6): 828-834. | |
14 | 段文利, 杨洪海, 张田田, 等. 沿程加热式气泡泵最佳热通量预测[J]. 建筑热能通风空调, 2020, 39(10): 16-20. |
Duan W L, Yang H H, Zhang T T, et al. Optimal heat flux prediction for a heated bubble pump[J]. Building Energy & Environment, 2020, 39(10): 16-20. | |
15 | Liu Y L, Tang J X, He C C, et al. Theoretical and experimental research on the performance of a refrigerant generating bubble pump with a high-accuracy semi-empirical model[J]. Applied Thermal Engineering, 2024, 240: 122316. |
16 | Yang H H, Chen Y P, Wu Y W, et al. Thermo-fluidic characteristics and performance in a distribute heating bubble pump generator[J]. International Journal of Refrigeration, 2022, 133: 181-190. |
17 | 杨林强, 刘道平, 杨亮, 等. 沉浸比对均流式多管导流型气泡泵性能的影响[J]. 制冷学报, 2019, 40(1): 51-57. |
Yang L Q, Liu D P, Yang L, et al. Influence of different immersion ratios on the performance of guided bubble pump with current equalizer and multiple tubes[J]. Journal of Refrigeration, 2019, 40(1): 51-57. | |
18 | 蒋丹清, 刘道平, 陈永军. 气泡泵压降模型评价研究[J]. 制冷技术, 2017, 37(4): 18-23, 46. |
Jiang D Q, Liu D P, Chen Y J. Investigation on evaluation of pressure drop models for bubble pump[J]. Chinese Journal of Refrigeration Technology, 2017, 37(4): 18-23, 46. | |
19 | 李华山, 王令宝, 卜宪标, 等. 提升管管径对有机工质气泡泵性能的影响分析[J]. 新能源进展, 2016, 4(1): 56-61. |
Li H S, Wang L B, Bu X B, et al. Effects of lift-tube diameter on performance of bubble pump with organic working fluids[J]. Advances in New and Renewable Energy, 2016, 4(1): 56-61. | |
20 | An L H, Liu D P, Chen Y J, et al. Theoretical and experimental study on the lifting performance of bubble pump with variable cross-section lift tube[J]. Applied Thermal Engineering, 2017, 111: 1265-1271. |
21 | Lin F L, Liu D P, Jiang D Q, et al. An experimental study on the performance of guided bubble pump with multiple tubes[J]. Applied Thermal Engineering, 2016, 106: 1052-1061. |
22 | Chan K W, McCulloch M. Analysis and modelling of water based bubble pump at atmospheric pressure[J]. International Journal of Refrigeration, 2013, 36(5): 1521-1528. |
23 | Gao H T, Kong D J, Wang C B, et al. Research on the generation of the bubble and the bubble pump characteristics of different diameters[C]//Energy Science and Applied Technology(ESAT 2016). Wuhan, 2016. |
24 | Wang Q, Liu Y L, Wang S K, et al. Experiments on the performance of bubble pumps with R134a/R23-DMF solutions for diffusion absorption refrigerator[J]. Applied Thermal Engineering, 2020, 177: 115481. |
25 | Bierling B, Schmid F, Spindler K. Influence of different heating types on the pumping performance of a bubble pump[J]. Heat and Mass Transfer, 2019, 55(1): 67-79. |
26 | 孔则赟, 杨洪海, 段文利, 等. 沿程加热气泡泵流动沸腾模拟研究[J]. 建筑热能通风空调, 2022, 41(4): 5-11. |
Kong Z Y, Yang H H, Duan W L, et al. Numerical simulation study on flow boiling of bubble pump along heating[J]. Building Energy & Environment, 2022, 41(4): 5-11. | |
27 | 刘冰冰, 王明雨, 高洪涛, 等. 气泡泵提升管内气泡群运动特性分析[J]. 船舶与海洋工程, 2018, 34(3): 1-7, 26. |
Liu B B, Wang M Y, Gao H T, et al. Analysis on the characteristics of bubble group motion inside bubble pump riser[J]. Naval Architecture and Ocean Engineering, 2018, 34(3): 1-7, 26. | |
28 | 谢育博, 刘道平, 杨亮, 等. 气泡泵垂直提升管内气泡运动的CFD数值模拟研究[J]. 轻工机械, 2017, 35(2): 43-47. |
Xie Y B, Liu D P, Yang L, et al. CFD numerical simulation analysis of bubble motion in vertical lifting of bubble pump[J]. Light Industry Machinery, 2017, 35(2): 43-47. | |
29 | Chung H S, Woo J S, Shin Y H, et al. Experimental assessment of two-phase bubble pump for solar water heating[J]. Journal of Central South University, 2012, 19(6): 1590-1599. |
30 | Leu T S, Liu Y H. Design and fabrication of thermocapillary micro bubble pump[J]. Advanced Materials Research, 2012, 528: 23-26. |
31 | Kuo S C, Shih C C, Chang C C, et al. Bubble pump in a closed-loop system for electronic cooling[J]. Applied Thermal Engineering, 2013, 51(1/2): 425-434. |
32 | 王锐, 魏涛, 黄豪杰, 等. 自循环微冷却系统的设计与测试[J]. 现代雷达, 2022, 44(9): 104-107. |
Wang R, Wei T, Huang H J, et al. Design and test of self-circulating micro-cooling system[J]. Modern Radar, 2022, 44(9): 104-107. | |
33 | 3M中国. 3M、SGI和英特尔展示面向“未来数据中心”的先进冷却技术[J]. 电脑与电信, 2014(4): 19. |
3M. 3M, SGI, and Intel demonstrate advanced cooling technologies for the “future data center”[J]. Computer & Telecommunication, 2014(4): 19. | |
34 | 吴曦蕾, 刘滢, 倪航, 等. 不同电子氟化液对浸没式相变冷却系统性能的影响[J]. 制冷学报, 2021, 42(4): 74-82. |
Wu X L, Liu Y, Ni H, et al. Effect of different electronic cooling liquid on the performance of immersion phase change cooling system[J]. Journal of Refrigeration, 2021, 42(4): 74-82. | |
35 | Febriyanto R, Pranoto I, Ariyadi H M, et al. Thermal performance of serpentine channel immersion cooling for lithium-ion battery 18650 with HFE-7100[J]. IOP Conference Series: Earth and Environmental Science, 2023, 1281(1): 012066. |
[1] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
[2] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[3] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[4] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[5] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[6] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[7] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[8] | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
[9] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[10] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[11] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[12] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[13] | 罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485. |
[14] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[15] | 杨锦蕊, 郑宏飞, 马兴龙, 金日辉, 梁深. 两级叠置式加湿除湿海水淡化装置性能研究[J]. 化工学报, 2024, 75(7): 2446-2454. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 286
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 213
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||