化工学报 ›› 2024, Vol. 75 ›› Issue (8): 3002-3010.DOI: 10.11949/0438-1157.20240216
• 能源和环境工程 • 上一篇
收稿日期:
2024-02-29
修回日期:
2024-04-15
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
郝亮
作者简介:
豆少军(1995—),男,博士,讲师,569226272@qq.com
基金资助:
Received:
2024-02-29
Revised:
2024-04-15
Online:
2024-08-25
Published:
2024-08-21
Contact:
Liang HAO
摘要:
重建了质子交换膜燃料电池(PEMFC)催化层的多孔结构,并通过格子Boltzmann Shan-Chen模型模拟催化层中水的毛细冷凝过程,分析运行湿度和液态水分布对质子传导、电化学活性面积和气体传输的影响规律。基于开发的耦合阴极氧传输、质子传导及电化学反应的介尺度电化学模型解析不同操作条件下催化层中的物理量分布并获得了催化层极化曲线,进一步研究确定催化层运行的最佳相对湿度为95%~98%。
中图分类号:
豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010.
Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer[J]. CIESC Journal, 2024, 75(8): 3002-3010.
参数 | 取值 |
---|---|
T | 333.15 K |
p | 1.5 atm |
cin | 10 mol·m-3 |
LCL | 8 μm |
LMEM | 40 μm |
Hi | 38.9[ |
Hl | 43[ |
Di | 5.9×10-10 m2·s-1[ |
Dl | 2.04×10-9 m2·s-1[ |
Eeq | 1.15 V |
i0 | 0.01 A·m-2[ |
α | 0.615[ |
cref | 40.96 mol·m-3[ |
表1 模拟参数
Table 1 Simulation parameters
参数 | 取值 |
---|---|
T | 333.15 K |
p | 1.5 atm |
cin | 10 mol·m-3 |
LCL | 8 μm |
LMEM | 40 μm |
Hi | 38.9[ |
Hl | 43[ |
Di | 5.9×10-10 m2·s-1[ |
Dl | 2.04×10-9 m2·s-1[ |
Eeq | 1.15 V |
i0 | 0.01 A·m-2[ |
α | 0.615[ |
cref | 40.96 mol·m-3[ |
图5 80% RH, 1.2 A·cm-2条件下催化层内的氧气浓度分布(a)、过电势分布(b)和反应速率分布(c)
Fig.5 Distribution contour of oxygen concentration (a), overpotential (b), and reaction rate (c) within CL at 80% RH and 1.2 A·cm-2
图6 模拟极化曲线与Yakovlev等[30]实验数据的比较(Pt负载0.3 mg·cm-2,I/C=0.6,80% RH,60℃,1.5 atm)
Fig.6 Comparison of simulated polarization curves with experimental data from Yakovlev et al[30] (Pt loading of 0.3 mg·cm-2,I/C=0.6, 60°C, 80% RH, 1.5 atm)
图7 1.2 A·cm-2条件下不同RH的催化层沿厚度方向的氧气浓度分布(a)、过电势分布(b)和反应速率分布(c),不同RH下的电压损失(d)
Fig.7 Distributions of oxygen concentration (a), overpotential (b), and reaction rate (c) at 1.2 A·cm-2 and different RHs, voltage loss at 1.2 A·cm-2 and different RHs (d)
1 | Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
2 | Park Y C, Tokiwa H, Kakinuma K, et al. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells[J]. Journal of Power Sources, 2016, 315: 179-191. |
3 | Yoon W, Weber A Z. Modeling low-platinum-loading effects in fuel-cell catalyst layers[J]. Journal of the Electrochemical Society, 2011, 158(8): B1007. |
4 | Cetinbas F C, Advani S G, Prasad A K. Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles[J]. Journal of Power Sources, 2014, 250: 110-119. |
5 | Darling R M. A hierarchical model for oxygen transport in agglomerates in the cathode catalyst layer of a polymer-electrolyte fuel cell[J]. Journal of the Electrochemical Society, 2018, 165(9): F571-F580. |
6 | Weber A Z, Borup R L, Darling R M, et al. A critical review of modeling transport phenomena in polymer-electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2014, 161(12): F1254-F1299. |
7 | Chen L, He A, Zhao J L, et al. Pore-scale modeling of complex transport phenomena in porous media[J]. Progress in Energy and Combustion Science, 2022, 88: 100968. |
8 | Inoue G, Kawase M. Effect of porous structure of catalyst layer on effective oxygen diffusion coefficient in polymer electrolyte fuel cell[J]. Journal of Power Sources, 2016, 327: 1-10. |
9 | Dou S J, Hao L, Liu H. Effects of carbon aggregates and ionomer distribution on the performance of PEM fuel cell catalyst layer: a pore-scale study[J]. Renewable Energy, 2023, 217: 119254. |
10 | 郝明晟, 李印实, 何雅玲. 质子交换膜燃料电池催化层模型研究进展与展望[J]. 科学通报, 2022, 67(19): 2192-2211. |
Hao M S, Li Y S, He Y L. Model of catalyst layers for proton exchange membrane fuel cells: progress and perspective[J]. Chinese Science Bulletin, 2022, 67(19): 2192-2211. | |
11 | Li X, Hou Y Z, Wu C R, et al. Interlink among catalyst loading, transport and performance of proton exchange membrane fuel cells: a pore-scale study[J]. Nanoscale Horizons, 2022, 7(3): 255-266. |
12 | 程晓静, 沈水云, 王超, 等. 质子交换膜燃料电池超低铂化过程中物质传输的分析与展望[J]. 科学通报, 2021, 66(33): 4240-4255. |
Cheng X J, Shen S Y, Wang C, et al. Analysis and outlook of mass transport in ultralow Pt loading proton exchange membrane fuel cells[J]. Chinese Science Bulletin, 2021, 66(33): 4240-4255. | |
13 | Mukherjee P P, Wang C Y, Kang Q J. Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells[J]. Electrochimica Acta, 2009, 54(27): 6861-6875. |
14 | Cetinbas F, Ahluwalia R, Kariuki N, et al. Effects of porous carbon morphology, agglomerate structure and relative humidity on local oxygen transport resistance[J]. Journal of the Electrochemical Society, 2020, 167(1): 013508. |
15 | Chen L, Kang Q J, Tao W Q. Pore-scale numerical study of multiphase reactive transport processes in cathode catalyst layers of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(24): 13283-13297. |
16 | Salari S, Stumper J, Bahrami M. Direct measurement and modeling relative gas diffusivity of PEMFC catalyst layers: the effect of ionomer to carbon ratio, operating temperature, porosity, and pore size distribution[J]. International Journal of Hydrogen Energy, 2018, 43(34): 16704-16718. |
17 | More K, Borup R, Reeves K. Identifying contributing degradation phenomena in PEM fuel cell membrane electride assemblies via electron microscopy[J]. ECS Transactions, 2006, 3(1): 717-733. |
18 | Dou S J, Hao L, Liu H. Effects of liquid water on the pore structure and transport coefficients in the cathode catalyst layer of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2022, 47(97): 41138-41153. |
19 | Suzuki T, Kudo K, Morimoto Y. Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell[J]. Journal of Power Sources, 2013, 222: 379-389. |
20 | Schulz V P, Becker J, Wiegmann A, et al. Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach[J]. Journal of the Electrochemical Society, 2007, 154(4): B419. |
21 | Cetinbas F C, Ahluwalia R K, Kariuki N, et al. Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes[J]. Journal of Power Sources, 2017, 344: 62-73. |
22 | Epting W K, Litster S. Effects of an agglomerate size distribution on the PEFC agglomerate model[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8505-8511. |
23 | Garrick T R, Moylan T E, Carpenter M K, et al. Editors' choice—electrochemically active surface area measurement of aged Pt alloy catalysts in PEM fuel cells by CO stripping[J]. Journal of the Electrochemical Society, 2017, 164(2): F55-F59. |
24 | Goswami S, Klaus S, Benziger J. Wetting and absorption of water drops on Nafion films[J]. Langmuir, 2008, 24(16): 8627-8633. |
25 | Springer T E, Zawodzinski T A, Gottesfeld S. Polymer electrolyte fuel cell model[J]. Journal of the Electrochemical Society, 1991, 138(8): 2334-2342. |
26 | Artemov V G, Uykur E, Kapralov P O, et al. Anomalously high proton conduction of interfacial water[J]. The Journal of Physical Chemistry Letters, 2020, 11(9): 3623-3628. |
27 | Yoshida H, Nagaoka M. Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation[J]. Journal of Computational Physics, 2010, 229(20): 7774-7795. |
28 | Jiao K, Ni M. Challenges and opportunities in modelling of proton exchange membrane fuel cells (PEMFC)[J]. International Journal of Energy Research, 2017, 41(13): 1793-1797. |
29 | Mukherjee P P, Wang C Y. Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer[J]. Journal of the Electrochemical Society, 2006, 153(5): A840. |
30 | Yakovlev Y V, Lobko Y V, Vorokhta M, et al. Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells[J]. Journal of Power Sources, 2021, 490: 229531. |
[1] | 朱楼, 宋杨凡, 王猛, 施睿鹏, 厉彦民, 陈鸿伟, 刘卓, 魏翔. 中心脉冲气-液-固循环流化床微生物燃料电池产电特性[J]. 化工学报, 2024, 75(8): 2991-3001. |
[2] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[3] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[4] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[5] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[6] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[7] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[8] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[9] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[10] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[11] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[12] | 黄斌, 丰生杰, 傅程, 张威. 液滴撞击单丝铺展特性的数值研究[J]. 化工学报, 2024, 75(6): 2233-2242. |
[13] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[14] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[15] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 345
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 223
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||