化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1722-1730.DOI: 10.11949/0438-1157.20241139
收稿日期:2024-10-15
修回日期:2024-11-26
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
沈永亮
作者简介:刘淑丽(1979—),女,博士,教授,shuli.liu@bit.edu.cn
基金资助:
Shuli LIU1(
), Wenhao ZHOU1, Shaoliang ZHANG1, Yongliang SHEN2(
)
Received:2024-10-15
Revised:2024-11-26
Online:2025-04-25
Published:2025-05-12
Contact:
Yongliang SHEN
摘要:
基于相变材料(PCM)的太阳能直接吸收相变集-蓄热器(DASSC)具有传热环节少、热能损失低、光热转化效率高的优势。PCM自身吸光能力弱、导热性能差,导致DASSC温度梯度大、传热速率慢,且现有研究大多针对DASSC的储热过程,缺少对放热过程特性的研究。为此,采用熔融共混法结合真空吸附法制备了光热转化定型复合相变材料(CPCM),并基于CPCM的高吸收性和高蓄热密度特性构建DASSC。测试了CPCM的光吸收特性和相变特性,探究了传热流体进口温度和Reynolds数对DASSC放热特性的影响规律,基于Morris方法分析了两种参数对DASSC放热速率影响的敏感性和相关性。结果表明,CPCM的吸光度是纯PCM的3.03倍。当传热流体入口温度从16.0℃降低至10.0℃时,DASSC平均放热速率提高47.7%;当Reynolds数从2462增大至5628时,DASSC平均放热速率提高15.0%。进口温度对DASSC放热速率影响的敏感性和相关性都显著高于Reynolds数。进口温度在DASSC的放热性能设计和优化中应单独计算最优值,而Reynolds数可根据正负相关性直接确定。
中图分类号:
刘淑丽, 周文豪, 张少良, 沈永亮. 太阳能直接吸收相变集-蓄热器的放热特性研究[J]. 化工学报, 2025, 76(4): 1722-1730.
Shuli LIU, Wenhao ZHOU, Shaoliang ZHANG, Yongliang SHEN. Heat release performance of direct absorption/storage solar collector[J]. CIESC Journal, 2025, 76(4): 1722-1730.
| 仪器/设备 | 参数 |
|---|---|
| 数据采集仪 | 型号 R7100 |
| 精度:±0.5℃ | |
| 热电偶 | 类型:K |
| 精度:±0.4% | |
| 测试范围:-60~260℃ | |
| 流量计 | 型号:K24 |
| 测试范围:0.5~20 L/min | |
| 最大工作压力:1.0 MPa | |
| 精度:±0.5% |
表1 实验中主要仪器详细参数
Table 1 Main parameters of instruments and sensors in the experimental system
| 仪器/设备 | 参数 |
|---|---|
| 数据采集仪 | 型号 R7100 |
| 精度:±0.5℃ | |
| 热电偶 | 类型:K |
| 精度:±0.4% | |
| 测试范围:-60~260℃ | |
| 流量计 | 型号:K24 |
| 测试范围:0.5~20 L/min | |
| 最大工作压力:1.0 MPa | |
| 精度:±0.5% |
图7 不同传热流体入口温度下CPCM平均温度(a)和DASSC平均放热速率(b)
Fig.7 Average temperature of CPCM (a) and average heat release rate of DASSC (b) at different inlet temperatures of heat transfer fluid
图8 不同传热流体Reynolds数下DASSC中CPCM平均温度(a)和平均放热速率(b)
Fig.8 Average temperature of CPCM (a) and average heat release rate of DASSC (b) at different Reynolds number of heat transfer fluid
| 影响因素 | μ* | δ | δ/μ* |
|---|---|---|---|
| 进口温度 | 4.8250 | 10.0250 | 2.0777 |
| Reynolds数 | 0.0038 | 0.0020 | 0.5263 |
表2 基于Morris方法的放热速率对影响因素的敏感性结果
Table 2 Sensitivity of heat release rate to affecting factors based on Morris method
| 影响因素 | μ* | δ | δ/μ* |
|---|---|---|---|
| 进口温度 | 4.8250 | 10.0250 | 2.0777 |
| Reynolds数 | 0.0038 | 0.0020 | 0.5263 |
| 30 | Soni K, Panwar N L. Revolutionizing thermal energy storage: an overview of porous support materials for advanced composite phase change materials (PCMs)[J]. Progress in Engineering Science, 2024, 1(4): 100023. |
| 31 | Zhou D, Zhao C Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering, 2011, 31(5): 970-977. |
| 32 | Menberg K, Heo Y, Choudhary R. Sensitivity analysis methods for building energy models: comparing computational costs and extractable information[J]. Energy and Buildings, 2016, 133: 433-445. |
| 33 | Zeferina V, Wood F R, Edwards R, et al. Sensitivity analysis of cooling demand applied to a large office building[J]. Energy and Buildings, 2021, 235: 110703. |
| 34 | Saurbayeva A, Ali Memon S, Kim J. Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones[J]. Energy, 2023, 278: 127973. |
| 35 | Zhang Q, Wang H C, Ling Z Y, et al. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability[J]. Solar Energy Materials and Solar Cells, 2015, 140: 158-166. |
| 1 | Zhao R K, Zhao L, Deng S, et al. Trends in patents for solar thermal utilization in China[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 852-862. |
| 2 | 屈健, 田敏, 王谦, 等. 碳纳米管-水纳米流体的光热转化特性[J]. 化工学报, 2016, 67(S2): 113-119. |
| Qu J, Tian M, Wang Q, et al. Photothermal conversion characteristics of carbon nanotubes-water nanofluids[J]. CIESC Journal, 2016, 67(S2): 113-119. | |
| 3 | Shen Y L, Liu S L, Rehman Mazhar A, et al. Phase change materials embedded with tuned porous media to alleviate overcharging problem of cascaded latent heat storage system for building heating[J]. Energy and Buildings, 2023, 281: 112746. |
| 4 | Qu J, Zhang R M, Wang Z H, et al. Photo-thermal conversion properties of hybrid CuO-MWCNT/H2O nanofluids for direct solar thermal energy harvest[J]. Applied Thermal Engineering, 2019, 147: 390-398. |
| 5 | Joseph A, Thomas S. Energy, exergy and corrosion analysis of direct absorption solar collector employed with ultra-high stable carbon quantum dot nanofluid[J]. Renewable Energy, 2022, 181: 725-737. |
| 6 | 艾雄杰, 袁俊, 吕伟中, 等. 基于相变储热的集成式太阳能集热器研究进展[J]. 储能科学与技术, 2024, 13(12): 4409-4420. |
| Ai X J, Yuan J, Lv W Z, et al. Research progress of integrated solar collector based on phase change heat storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4409-4420. | |
| 7 | Sadeghi G, Mehrali M, Shahi M, et al. Experimental analysis of shape-stabilized PCM applied to a direct-absorption evacuated tube solar collector exploiting sodium acetate trihydrate and graphite[J]. Energy Conversion and Management, 2022, 269: 116176. |
| 8 | Minardi J E, Chuang H N. Performance of a “black” liquid flat-plate solar collector[J]. Solar Energy, 1975, 17(3): 179-183. |
| 9 | Hasan A, Alazzam A, Abu-Nada E. Direct absorption solar collectors: fundamentals, modeling approaches, design and operating parameters, advances, knowledge gaps, and future prospects[J]. Progress in Energy and Combustion Science, 2024, 103: 101160. |
| 10 | 刘萍, 邱雨生, 李世婧, 等. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
| Liu P, Qiu Y S, Li S J, et al. Heat transfer and flow characteristics of nanofluids in microchannels[J]. CIESC Journal, 2025, 76(1): 184-197. | |
| 11 | Wang Q R, Yang L, Zhao N, et al. A review of applications of plasmonic and conventional nanofluids in solar heat collection[J]. Applied Thermal Engineering, 2023, 219: 119476. |
| 12 | Zhu W L, Zuo X H, Ding Y M, et al. Experimental comparison of the photothermal conversion performance of coal and plant soot nanofluids for direct absorption solar collectors[J]. Solar Energy, 2023, 264: 112056. |
| 13 | Chen Y J, Zhang Y L, Lan H Y, et al. Electric field combined nanofluid to enhance photothermal efficiency of the direct absorption solar collector[J]. Renewable Energy, 2023, 215: 118988. |
| 14 | Tyagi H, Phelan P, Prasher R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector[J]. Journal of Solar Energy Engineering, 2009, 131(4): 041004. |
| 15 | Zheng D, Yao J, Zhu H X, et al. Optimizing photothermal conversion efficiency in a parabolic trough direct absorption solar collector through ferrofluid and magnetic field synergy[J]. Energy Conversion and Management, 2023, 285: 117020. |
| 16 | 马非, 张鹏. 基于相变浆体的直接吸收式太阳能集热器研究[J]. 工程热物理学报, 2019, 40(8): 1852-1856. |
| Ma F, Zhang P. Investigation on phase change slurry based direct absorption solar collector[J]. Journal of Engineering Thermophysics, 2019, 40(8): 1852-1856. | |
| 17 | Kan C M, Chang S W, Li J Y, et al. Optically manipulated nitrate-salt-based direct absorption solar collectors for a photothermal energy harvesting system[J]. Chemical Engineering Journal, 2024, 498: 155317. |
| 18 | 刘昌会, 肖桐, 刘庆祎, 等. 多孔二氧化钛强化的相变材料储热机理研究[J]. 化工学报, 2024, 75(2): 706-714. |
| Liu C H, Xiao T, Liu Q Y, et al. Investigation of the thermal storage mechanism of porous TiO2 enhanced phase change materials[J]. CIESC Journal, 2024, 75(2): 706-714. | |
| 19 | Zhou M, Tan Y, Chen R, et al. Erythritol supported by carbon nanotubes reinforced alumina-silica aerogels as novel form-stable phase change materials with high photothermal conversion efficiency and greatly suppressed supercooling[J]. Journal of Energy Storage, 2024, 90: 111909. |
| 20 | Li S Y, Yan T, Huo Y J, et al. Polydopamine/copper nanoparticles synergistically modified carbon foam/octadecanol composite phase change materials for photothermal energy conversion and storage[J]. Chemical Engineering Science, 2024, 300: 120601. |
| 21 | Xiao Q Q, Cao J H, Zhang Y X, et al. The application of solar-to-thermal conversion phase change material in novel solar water heating system[J]. Solar Energy, 2020, 199: 484-490. |
| 22 | Zhang Y F, Tang J B, Chen J L, et al. Accelerating the solar-thermal energy storage via inner-light supplying with optical waveguide[J]. Nature Communications, 2023, 14: 3456. |
| 23 | Kumar S, Chander N, Gupta V K, et al. Progress, challenges and future prospects of plasmonic nanofluid based direct absorption solar collectors—a state-of-the-art review[J]. Solar Energy, 2021, 227: 365-425. |
| 24 | Baro R K, Kotecha P, Anandalakshmi R. Multi-objective optimization of nanofluid-based direct absorption solar collector for low-temperature applications[J]. Journal of Building Engineering, 2023, 72: 106258. |
| 25 | Albdour S A, Haddad Z, Sharaf O Z, et al. Micro/nano-encapsulated phase-change materials (ePCMs) for solar photothermal absorption and storage: fundamentals, recent advances, and future directions[J]. Progress in Energy and Combustion Science, 2022, 93: 101037. |
| 26 | Tripathi B M, Shukla S K, Rathore P K S. A comprehensive review on solar to thermal energy conversion and storage using phase change materials[J]. Journal of Energy Storage, 2023, 72: 108280. |
| 27 | Zhang T, Yan Z W, Wang L Y, et al. Theoretical analysis and experimental study on a low-temperature heat pump sludge drying system[J]. Energy, 2021, 214: 118985. |
| 28 | Yang Y A, Li R S, Zhu Y Q, et al. Experimental and simulation study of air source heat pump for residential applications in Northern China[J]. Energy and Buildings, 2020, 224: 110278. |
| 29 | Muraleedharan Nair A, Wilson C, Kamkari B, et al. Advancing thermal performance in PCM-based energy storage: a comparative study with fins, expanded graphite, and combined configurations[J]. Energy Conversion and Management: X, 2024, 23: 100627. |
| [1] | 翟祥瑞, 张伟, 张倩倩, 曲玖哲, 杨绪飞, 邓雅军, 宇波. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446. |
| [2] | 范佳媛, 曾文慧, 任志超, 张文涛, 吕霜. 多熔点相变乳液的制备及性能强化研究[J]. 化工学报, 2025, 76(4): 1863-1874. |
| [3] | 张赵雪, 李正宇, 崔文慧, 王倩, 王志平, 龚领会. 基于液氖液氮梯级蓄冷的液氢储能中冷能回收利用研究[J]. 化工学报, 2025, 76(4): 1731-1741. |
| [4] | 张亦鸣, 杨鹏, 纪献兵, 任纪星, 张磊, 苗政. 多回路平板式环路热管热性能[J]. 化工学报, 2025, 76(3): 1018-1028. |
| [5] | 王三龙, 王跃霖, 曹宇. 基于相异质结的高效无机钙钛矿太阳能电池的性能研究[J]. 化工学报, 2025, 76(3): 1346-1352. |
| [6] | 张履胜, 王治红, 柳青, 李雪雯, 谭仁敏. 液-液相变吸收剂捕集二氧化碳研究进展[J]. 化工学报, 2025, 76(3): 933-950. |
| [7] | 肖俊兵, 邹博, 任建地, 刘昌会, 贾传坤. 基于相图分析的氯化物复合熔盐储热性能研究[J]. 化工学报, 2025, 76(3): 963-974. |
| [8] | 张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005. |
| [9] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [10] | 黄鑫, 李逸龙, 李卫东, 施鸿翔, 尹鹏博, 李臻超, 滕霖, 江莉龙. 液氨-成品油混合体系相平衡及减压相变规律研究[J]. 化工学报, 2025, 76(1): 71-80. |
| [11] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
| [12] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
| [13] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
| [14] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
| [15] | 袁玲雅, 张滢. 中国光伏产业发展及其资源环境影响[J]. 化工学报, 2024, 75(S1): 14-24. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号