化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1404-1421.DOI: 10.11949/0438-1157.20241060
收稿日期:
2024-09-23
修回日期:
2024-11-25
出版日期:
2025-04-25
发布日期:
2025-05-12
通讯作者:
王军锋
作者简介:
孙睿(2001—),男,硕士研究生,renatosr@163.com
基金资助:
Rui SUN(), Junfeng WANG(
), Haojie XU, Bufa LI, Yaxian XU
Received:
2024-09-23
Revised:
2024-11-25
Online:
2025-04-25
Published:
2025-05-12
Contact:
Junfeng WANG
摘要:
喷雾冷却因具有散热能力强、工质用量少、接触热阻低等优点,已成为解决大功率电子元器件散热问题的有效途径。通过梳理喷雾冷却的换热机理及主要强化传热手段,指出了喷雾冷却技术目前所面临的挑战和瓶颈,以及未来的主要发展方向。首先,回顾了喷雾冷却过程中热量传递的基本形式,通过与其他散热方式进行对比,发现复杂的换热机理使得喷雾冷却在实现高热通量散热方面极具发展潜力。其次,详细介绍了喷雾冷却各类强化手段实验研究的最新进展,包括工质改性、表面处理、喷雾参数优化以及施加外部物理场等。随后,着重介绍了基于外加电场的新型静电喷雾冷却技术的最新研究进展情况。最后,对喷雾冷却技术后续在理论研究和工业应用中的机遇和挑战进行了探讨。
中图分类号:
孙睿, 王军锋, 许浩洁, 李步发, 徐雅弦. 喷雾冷却技术及其强化传热机制研究进展[J]. 化工学报, 2025, 76(4): 1404-1421.
Rui SUN, Junfeng WANG, Haojie XU, Bufa LI, Yaxian XU. Research progress on heat transfer enhancement mechanism of spray cooling technology[J]. CIESC Journal, 2025, 76(4): 1404-1421.
图4 与单一纳米流体体积分数相同的混合纳米流体中协同热效应:分散状态(a);TiO2/EG-W纳米流体的透射电镜照片(b);团簇内部结构(c);Al2O3-TiO2/EG-W纳米流体的透射电镜照片及颗粒粒径分布(d)[54]
Fig.4 Demonstration of the synergistic thermal effect in hybrid nanofluids for the same volume fraction as mono nanofluids dispersed status (a), TEM image of TiO2/EG-W nanofluid (b), inner structure of the cluster (c), and TEM images and particles size percent of Al2O3-TiO2/EG-W nanofluid (d)[54]
图7 (a)喷淋板设计及MCM上加热元件的布局[102];(b)用于传热数据的喷淋板及带有测试模具的多芯片模块示意图[103];(c)喷嘴阵列[104]
Fig.7 (a) Spray plate design and layout of heater elements on MCM[102]; (b) Spray plate used for heat transfer data and diagram of multichip module (MCM) with test dies[103]; (c) The nozzle array[104]
图8 T = 95℃, We = 61时不同表面的液滴撞击演化图像:(a)铁磁流体(Re = 1968);(b)纯水(Re = 4333)和水表面活性剂溶液(Re = 2277)[110]
Fig.8 Droplet impingement evolution images for different surfaces at T = 95℃ and We = 61: (a) ferrofluid (Re = 1968); (b) pure water (Re = 4333) and water surfactant solution (Re = 2277)[110]
图11 (a)常规与荷电条件下静态液滴的形成机制示意图;(b)几种典型的静电喷雾模式[130]
Fig.11 (a) Schematic of the droplet formation mechanisms of neutral and charged liquid; (b) Several representative electrospray modes[130]
1 | Mahajan R, Nair R, Wakharkar V, et al. Emerging directions for packaging technologies[J]. Intel Technology Journal, 2002, 6(2):65-72. |
2 | Lee J, Mudawar I. Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks-Part 1: Experimental methods and flow visualization results[J]. International Journal of Heat and Mass Transfer, 2008, 51(17/18): 4315-4326. |
3 | Lee J, Mudawar I. Low-temperature two-phase microchannel cooling for high-heat-flux thermal management of defense electronics[J]. IEEE Transactions on Components and Packaging Technologies, 2009, 32(2): 453-465. |
4 | Agostini B, Fabbri M, Park J E, et al. State of the art of high heat flux cooling technologies[J]. Heat Transfer Engineering, 2007, 28(4): 258-281. |
5 | Laguna G, Vilarrubí M, Ibañez M, et al. Numerical parametric study of a hotspot-targeted microfluidic cooling array for microelectronics[J]. Applied Thermal Engineering, 2018, 144: 71-80. |
6 | Bailey C. Thermal management technologies for electronic packaging: current capabilities and future challenges for modelling tools[C]//2008 10th Electronics Packaging Technology Conference. IEEE, 2008: 527-532. |
7 | Guan N, Liu Z G, Zhang C W. Numerical investigation on heat transfer of liquid flow at low Reynolds number in micro-cylinder-groups[J]. Heat and Mass Transfer, 2012, 48(7): 1141-1153. |
8 | Xie G N, Sundén B, Wang L K, et al. Parametric study on heat transfer enhancement and pressure drop of an internal blade tip-wall with pin-fin arrays[J]. Heat and Mass Transfer, 2011, 47(1): 45-57. |
9 | Ozisik M N. Inverse Heat Transfer: Fundamentals and Applications [M]. London: Taylor & Francis, 2018. |
10 | Xu G P. Evaluation of a liquid cooling concept for high power processors[C]//Twenty-Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium. IEEE, 2007: 190-195. |
11 | Alawi O A, Sidik N A C, Mohammed H A, et al. Fluid flow and heat transfer characteristics of nanofluids in heat pipes: a review[J]. International Communications in Heat and Mass Transfer, 2014, 56: 50-62. |
12 | Chandratilleke T T, Jagannatha D, Narayanaswamy R. Heat transfer enhancement in microchannels with cross-flow synthetic jets[J]. International Journal of Thermal Sciences, 2010, 49(3): 504-513. |
13 | Dong J Q, Zhang X H, Wang J Z. Experimental investigation on heat transfer characteristics of plat heat exchanger applied in organic Rankine cycle (ORC)[J]. Applied Thermal Engineering, 2017, 112: 1137-1152. |
14 | Krishan G, Aw K C, Sharma R N. Synthetic jet impingement heat transfer enhancement—a review[J]. Applied Thermal Engineering, 2019, 149: 1305-1323. |
15 | Punch J, Walsh E, Grimes R, et al. Jets and rotary flows for single-phase liquid cooling: an overview of some recent experimental findings[C]//2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2010. |
16 | Chingulpitak S, Wongwises S. A review of the effect of flow directions and behaviors on the thermal performance of conventional heat sinks[J]. International Journal of Heat and Mass Transfer, 2015, 81: 10-18. |
17 | Dixit T, Ghosh I. Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1298-1311. |
18 | Kumar V, Paraschivoiu M, Nigam K D P. Single-phase fluid flow and mixing in microchannels[J]. Chemical Engineering Science, 2011, 66(7): 1329-1373. |
19 | Sidik N A C, Muhamad M N A W, Japar W M A A, et al. An overview of passive techniques for heat transfer augmentation in microchannel heat sink[J]. International Communications in Heat and Mass Transfer, 2017, 88: 74-83. |
20 | Cheng W L, Zhang W W, Chen H, et al. Spray cooling and flash evaporation cooling: the current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628. |
21 | Kandlikar S G, Bapat A V. Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal[J]. Heat Transfer Engineering, 2007, 28(11): 911-923. |
22 | 包云皓, 陈建业, 邵双全. 数据中心高效液冷技术研究现状[J]. 制冷与空调, 2023, 23(10): 58-69. |
Bao Y H, Chen J Y, Shao S Q. Research status of high-efficient liquid cooling technology in data center[J]. Refrigeration and Air-Conditioning, 2023, 23(10): 58-69. | |
23 | 许浩洁. 静电喷雾冷却特性及其强化传热机理研究 [D]. 镇江:江苏大学,2023. |
Xu H J. Electrospray cooling characteristics and the heat transfer enhancement mechanism [D]. Zhenjiang: Jiangsu University, 2023. | |
24 | 朱俞翡. 电子芯片散热技术及其发展研究[J]. 产业科技创新, 2023, 5(1): 59-61. |
Zhu Y F. Research on heat dissipation technology of electronic chips and its development[J]. Industrial Technology Innovation, 2023, 5(1): 59-61. | |
25 | 陈天华, 刘兆轩, 韩群, 等. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
Chen T H, Liu Z X, Han Q, et al. Research progress and influencing factors of the heat transfer enhancement of spray cooling[J]. CIESC Journal, 2023, 74(8): 3149-3170. | |
26 | 贺元骅, 苏星辰, 赵梁. 动力锂离子电池主动热管理研究进展 [J]. 清华大学学报(自然科学版), . |
He Y Y, Su X C, Zhao L. Research progress on active thermal management of power lithium-ion batteries[J]. Journal of Tsinghua University (Science and Technology), . | |
27 | 马杰, 郭明钢. 闪蒸喷雾冷却技术研究进展[J]. 制冷与空调, 2022, 22(4): 1-5. |
Ma J, Guo M G. Research progress of flash spray cooling technology[J]. Refrigeration and Air-Conditioning, 2022, 22(4): 1-5. | |
28 | 齐文亮, 王婉人, 杨雨薇, 等. 航空电子设备喷雾冷却技术研究进展[J]. 科技导报, 2022, 40(5): 95-104. |
Qi W L, Wang W R, Yang Y W, et al. Research progress of spray cooling technology for avionics[J]. Science & Technology Review, 2022, 40(5): 95-104. | |
29 | 杨雨薇, 齐文亮, 张杰. 机载电子设备液冷技术应用研究进展[J]. 机械研究与应用, 2024, 37(3): 163-165. |
Yang Y W, Qi W L, Zhang J. Progress in the application of liquid-cooling technology for airborne electronic equipment[J]. Mechanical Research & Application, 2024, 37(3): 163-165. | |
30 | 张亚东, 张伟, 秦朔. 喷雾冷却换热机理研究进展[J]. 制冷技术, 2020, 40(1): 34-41, 53. |
Zhang Y D, Zhang W, Qin S. Research progress of spray cooling heat transfer mechanism[J]. Chinese Journal of Refrigeration Technology, 2020, 40(1): 34-41, 53. | |
31 | Kim J. Spray cooling heat transfer: the state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 753-767. |
32 | Xu R N, Wang G Y, Jiang P X. Spray cooling on enhanced surfaces: a review of the progress and mechanisms[J]. Journal of Electronic Packaging, 2022, 144(1): 010802. |
33 | Estes K A, Mudawar I. Comparison of two-phase electronic cooling using free jets and sprays[J]. Journal of Electronic Packaging, 1995, 117(4): 323-332. |
34 | Ahsan A. Two Phase Flow, Phase Change and Numerical Modeling[M]. Germany: BoD-Books on Demand, 2011. |
35 | Yuan W X, Schnerr G H. Numerical simulation of two-phase flow in injection nozzles: interaction of cavitation and external jet formation[J]. Journal of Fluids Engineering, 2003, 125(6): 963-969. |
36 | Jia W, Qiu H H. Experimental investigation of droplet dynamics and heat transfer in spray cooling[J]. Experimental Thermal and Fluid Science, 2003, 27(7): 829-838. |
37 | Liu H, Cai C, Yin H C, et al. Experimental investigation on heat transfer of spray cooling with the mixture of ethanol and water[J]. International Journal of Thermal Sciences, 2018, 133: 62-68. |
38 | Nikolopoulos N, Theodorakakos A, Bergeles G. Three-dimensional numerical investigation of a droplet impinging normally onto a wall film[J]. Journal of Computational Physics, 2007, 225(1): 322-341. |
39 | Guo Y L, Wang F, Gong L Y, et al. Evolution and heat transfer after droplet impact on heated liquid film with vapor bubbles inside[J]. Numerical Heat Transfer, Part B: Fundamentals, 2019, 76(5): 273-284. |
40 | Bhatt N H, Lily, Raj R, et al. Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanol-tween20-water solution at very high initial surface temperature[J]. International Journal of Heat and Mass Transfer, 2017, 110: 330-347. |
41 | Liu H, Cai C, Jia M, et al. Experimental investigation on spray cooling with low-alcohol additives[J]. Applied Thermal Engineering, 2019, 146: 921-930. |
42 | Zhang W W, Li Y Y, Long W J, et al. Enhancement mechanism of high alcohol surfactant on spray cooling: experimental study[J]. International Journal of Heat and Mass Transfer, 2018, 126: 363-376. |
43 | Liu N, Zhan T J, Zhang Y W, et al. Experimental investigation of comprehensive effects of surfactant and inclined mode on spray cooling heat transfer[J]. International Journal of Thermal Sciences, 2019, 136: 457-466. |
44 | Qiao Y M, Chandra S. Spray cooling enhancement by addition of a surfactant[J]. Journal of Heat Transfer, 1998, 120(1): 92-98. |
45 | Liu N, Yu Z X, Liang Y, et al. Effects of mixed surfactants on heat transfer performance of pulsed spray cooling[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118593. |
46 | Ravikumar S V, Jha J M, Sarkar I, et al. Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives[J]. Experimental Thermal and Fluid Science, 2013, 50: 79-89. |
47 | Mohapatra S S, Ravikumar S V, Andhare S, et al. Experimental study and optimization of air atomized spray with surfactant added water to produce high cooling rate[J]. Journal of Enhanced Heat Transfer, 2012, 19(5): 397-408. |
48 | Lily, Munshi B, Barik K, et al. The role of surface tension and viscosity of the coolant on spray cooling performance of red-hot inclined steel plate[J]. International Journal of Heat and Mass Transfer, 2019, 130: 496-513. |
49 | Choi S U, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[R]. Argonne National Lab.(ANL), Argonne, IL (United States), 1995. |
50 | Eastman J A, Choi U S, Li S, et al. Enhanced thermal conductivity through the development of nanofluids[J]. MRS Online Proceedings Library, 1996, 457(1): 3-11. |
51 | Vassallo P, Kumar R, D'Amico S. Pool boiling heat transfer experiments in silica-water nano-fluids[J]. International Journal of Heat and Mass Transfer, 2004, 47(2): 407-411. |
52 | Hsieh S S, Liu H H, Yeh Y F. Nanofluids spray heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 2016, 94: 104-118. |
53 | Muneeshwaran M, Srinivasan G, Muthukumar P, et al. Role of hybrid-nanofluid in heat transfer enhancement—a review[J]. International Communications in Heat and Mass Transfer, 2021, 125: 105341. |
54 | Ma M Y, Zhai Y L, Yao P T, et al. Synergistic mechanism of thermal conductivity enhancement and economic analysis of hybrid nanofluids[J]. Powder Technology, 2020, 373: 702-715. |
55 | Suresh S, Venkitaraj K P, Selvakumar P, et al. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer[J]. Experimental Thermal and Fluid Science, 2012, 38: 54-60. |
56 | Suresh S, Venkitaraj K P, Hameed M S, et al. Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3-Cu hybrid nanofluids[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(3): 2563-2572. |
57 | Jyothirmayee Aravind S S, Ramaprabhu S. Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation[J]. RSC Advances, 2013, 3(13): 4199-4206. |
58 | Han Z H, Yang B, Kim S H, et al. Application of hybrid sphere/carbon nanotube particles in nanofluids[J]. Nanotechnology, 2007, 18(10): 105701. |
59 | David S, Sefiane K, Tadrist L. Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298(1/2): 108-114. |
60 | Dunn G J, Wilson S K, Duffy B R, et al. The strong influence of substrate conductivity on droplet evaporation[J]. Journal of Fluid Mechanics, 2009, 623: 329-351. |
61 | Adera S, Raj R, Enright R, et al. Non-wetting droplets on hot superhydrophilic surfaces[J]. Nature Communications, 2013, 4: 2518. |
62 | Schutzius T M, Jung S, Maitra T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces[J]. Nature, 2015, 527(7576): 82-85. |
63 | Tran T, Staat H J J, Susarrey-Arce A, et al. Droplet impact on superheated micro-structured surfaces[J]. Soft Matter, 2013, 9(12): 3272-3282. |
64 | Wemp C K, Carey V P. Heat transport for evaporating droplets on superhydrophilic, thin, nanoporous layers[J]. International Journal of Heat and Mass Transfer, 2019, 132: 34-51. |
65 | Silk E A, Kim J, Kiger K. Spray cooling of enhanced surfaces: impact of structured surface geometry and spray axis inclination[J]. International Journal of Heat and Mass Transfer, 2006, 49(25/26): 4910-4920. |
66 | Zhang Z, Jiang P X, Christopher D M, et al. Experimental investigation of spray cooling on micro-, nano- and hybrid-structured surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 80: 26-37. |
67 | Zhang Z, Jiang P X, Ouyang X L, et al. Experimental investigation of spray cooling on smooth and micro-structured surfaces[J]. International Journal of Heat and Mass Transfer, 2014, 76: 366-375. |
68 | Sodtke C, Stephan P. Spray cooling on micro structured surfaces[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 4089-4097. |
69 | Martínez-Galván E, Antón R, Ramos J C, et al. Influence of surface roughness on a spray cooling system with R134a. Part I: Heat transfer measurements[J]. Experimental Thermal and Fluid Science, 2013, 46: 183-190. |
70 | Chen J N, Xu R N, Zhang Z, et al. Phenomenon and mechanism of spray cooling on nanowire arrayed and hybrid micro/nanostructured surfaces[J]. Journal of Heat Transfer, 2018, 140(11): 112401. |
71 | Xu R N, Cao L, Wang G Y, et al. Experimental investigation of closed loop spray cooling with micro- and hybrid micro-/nano-engineered surfaces[J]. Applied Thermal Engineering, 2020, 180: 115697. |
72 | Hsieh S S, Tsai H H. Thermal and flow measurements of continuous cryogenic spray cooling[J]. Archives of Dermatological Research, 2006, 298(2): 82-95. |
73 | Karapetian E, Aguilar G, Kimel S, et al. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling[J]. Physics in Medicine and Biology, 2003, 48(1): N1-N6. |
74 | Zhou N Y, Chen F J, Cao Y C, et al. Experimental investigation on the performance of a water spray cooling system[J]. Applied Thermal Engineering, 2017, 112: 1117-1128. |
75 | Cheng W L, Peng Y H, Chen H, et al. Experimental investigation on the heat transfer characteristics of vacuum spray flash evaporation cooling[J]. International Journal of Heat and Mass Transfer, 2016, 102: 233-240. |
76 | Estes K A, Mudawar I. Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces[J]. International Journal of Heat and Mass Transfer, 1995, 38(16): 2985-2996. |
77 | Chen H, Cheng W L, Peng Y H, et al. Experimental study on optimal spray parameters of piezoelectric atomizer based spray cooling[J]. International Journal of Heat and Mass Transfer, 2016, 103: 57-65. |
78 | Hou Y, Liu J H, Su X M, et al. Experimental study on the characteristics of a closed loop R134-a spray cooling[J]. Experimental Thermal and Fluid Science, 2015, 61: 194-200. |
79 | Karwa N, Kale S R, Subbarao P M V. Experimental study of non-boiling heat transfer from a horizontal surface by water sprays[J]. Experimental Thermal and Fluid Science, 2007, 32(2): 571-579. |
80 | Rybicki J R, Mudawar I. Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays[J]. International Journal of Heat and Mass Transfer, 2006, 49(1/2): 5-16. |
81 | Cheng W L, Zhang W W, Jiang L J, et al. Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime[J]. Applied Thermal Engineering, 2015, 80: 160-167. |
82 | Fu H, Zhao R, Long W J, et al. Study on cooling performance of rapid cooling system based on vacuum spray flash evaporation[J]. Applied Thermal Engineering, 2022, 201: 117751. |
83 | Cheng W L, Han F Y, Liu Q N, et al. Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling[J]. Energy, 2011, 36(1): 249-257. |
84 | Zhang Y, Pang L P, Xie Y Q, et al. Experimental investigation of spray cooling heat transfer on straight fin surface under acceleration conditions[J]. Experimental Heat Transfer, 2015, 28(6): 564-579. |
85 | 杨春光, 张浩, 刘军. 开式单喷嘴喷雾冷却均匀性实验研究[J]. 强激光与粒子束, 2020, 32(7): 23-28. |
Yang C G, Zhang H, Liu J. Experimental investigation on cooling uniformity of open single nozzle spray[J]. High Power Laser and Particle Beams, 2020, 32(7): 23-28. | |
86 | Zhang Z W, Li Q, Hu D H. Experimental investigation on heat transfer characteristics of R1336mzz flash spray cooling[J]. Applied Thermal Engineering, 2020, 174: 115277. |
87 | Aguilar G, Wang G X, Nelson J S. Effect of spurt duration on the heat transfer dynamics during cryogen spray cooling[J]. Physics in Medicine and Biology, 2003, 48(14): 2169-2181. |
88 | Aguilar G, Wang G X, Nelson J S. Dynamic behavior of cryogen spray cooling: effects of spurt duration and spray distance[J]. Lasers in Surgery and Medicine, 2003, 32(2): 152-159. |
89 | Tian J M, Li B F, Wang J F, et al. Transient analysis of cryogenic cooling performance for high-power semiconductor lasers using flash-evaporation spray[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123216. |
90 | Tian J M, Chen B, Zhou Z F, et al. Theoretical study on cryogen spray cooling in laser treatment of OTA's nevus: comparison and optimization of R134a, R404A and R32[J]. Energies, 2020, 13(21): 5647. |
91 | Mudawar I, Estes K A. Optimizing and predicting CHF in spray cooling of a square surface[J]. Journal of Heat Transfer, 1996, 118(3): 672-679. |
92 | Zhou Z F, Chen B, Wang R, et al. Coupling effect of hypobaric pressure and spray distance on heat transfer dynamics of R134a pulsed flashing spray cooling[J]. Experimental Thermal and Fluid Science, 2016, 70: 96-104. |
93 | Zhou Z F, Wang R, Chen B, et al. Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures[J]. Applied Thermal Engineering, 2016, 102: 813-821. |
94 | Tian J M, Chen B, Zhou Z F. Parametric effect investigation on surface heat transfer performances during cryogen spray cooling[J]. Applied Thermal Engineering, 2018, 143: 767-776. |
95 | Sarmadian A, Dunne J F, Jose J T, et al. Correlation models of critical heat flux and associated temperature for spray evaporative cooling of vibrating surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121735. |
96 | Sarmadian A, Thalackottore Jose J, Dunne J F, et al. The effect of key parameter changes on the critical heat flux of spray evaporatively-cooled vibrating surfaces using a single misting nozzle[J]. Applied Thermal Engineering, 2022, 213: 118815. |
97 | Visaria M, Mudawar I. A systematic approach to predicting critical heat flux for inclined sprays[J]. Journal of Electronic Packaging, 2007, 129(4): 452-459. |
98 | Guo Y X, Zhou Z F, Jia J Y, et al. Optimal heat transfer criterion and inclination angle effects on non-boiling regime spray cooling[C]//2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. IEEE, 2009: 193-200. |
99 | Fu T L, Wang Z D, Deng X T, et al. The influence of spray inclination angle on the ultra fast cooling of steel plate in spray cooling condition[J]. Applied Thermal Engineering, 2015, 78: 500-506. |
100 | Liu N, Li L R, Kang Y T. Experimental study on heat transfer performance enhancement by micro-structured surfaces for inclination spray application[J]. International Journal of Heat and Mass Transfer, 2019, 133: 631-640. |
101 | 李晓阳, 李东, 陶明磊, 等. 多喷嘴喷雾冷却表面传热特性实验研究[J]. 化工学报, 2024, 75(1): 231-241. |
Li X Y, Li D, Tao M L, et al. Experimental study on heat transfer characteristics of multi nozzle spray cooling surface[J]. CIESC Journal, 2024, 75(1): 231-241. | |
102 | Pautsch A G, Shedd T A. Spray impingement cooling with single- and multiple-nozzle arrays. Part Ⅰ: Heat transfer data using FC-72[J]. International Journal of Heat and Mass Transfer, 2005, 48(15): 3167-3175. |
103 | Shedd T A, Pautsch A G. Spray impingement cooling with single- and multiple-nozzle arrays. Part Ⅱ: Visualization and empirical models[J]. International Journal of Heat and Mass Transfer, 2005, 48(15): 3176-3184. |
104 | Zhao J H, Guo Y M, Ai Q, et al. Experimental study on spray cooling heat transfer of LN2 for a large area[J]. Energies, 2023, 16(9): 3877. |
105 | Kumar G, Shyam S, Mondal P K. Impact dynamics of a viscoelastic ferrofluid droplet under the influence of magnetic field[M]//Lecture Notes in Mechanical Engineering. Singapore: Springer Singapore, 2021: 961-968. |
106 | Li Q P, Ouyang Y, Niu X D, et al. Maximum spreading of impacting ferrofluid droplets under the effect of nonuniform magnetic field[J]. Langmuir, 2022, 38(8): 2601-2607. |
107 | Sudo S, Funaoka M, Nishiyama H. Sequential impact of two magnetic fluid droplets on a paper surface[J]. Journal of Magnetism and Magnetic Materials, 2002, 252: 283-286. |
108 | Yilbas B S, Abubakar A A, Hassan G, et al. Ferro-fluid droplet impact on hydrophobic surface under magnetic influence[J]. Surfaces and Interfaces, 2022, 29: 101731. |
109 | Vinod S, Philip J. Field induced deformation of sessile ferrofluid droplets: effect of particle size distribution on magnetowetting[J]. Journal of Magnetism and Magnetic Materials, 2018, 466: 295-300. |
110 | Benther J D, Wilson B, Petrini P A, et al. Ferrofluid droplet impingement cooling of modified surfaces under the influence of a magnetic field[J]. International Journal of Heat and Mass Transfer, 2023, 215: 124370. |
111 | Adelberg M. Breakup rate and penetration of a liquid jet in a gas stream[J]. AIAA Journal, 1967, 5(8): 1408-1415. |
112 | Schetz J A, Padhye A. Penetration and breakup of liquids in subsonic airstreams[J]. AIAA Journal, 1977, 15(10): 1385-1390. |
113 | Wu P K, Kirkendall K A, Fuller R P, et al. Breakup processes of liquid jets in subsonic crossflows[J]. Journal of Propulsion and Power, 1997, 13(1): 64-73. |
114 | Stenzler J, Lee J, Santavicca D. Penetration of liquid jets in a crossflow[C]//41st Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2003: 1327. |
115 | Wang S L, Huang Y, Liu Z L. Theoretical analysis of surface waves on a round liquid jet in a gaseous crossflow[J]. Atomization and Sprays, 2014, 24(1): 23-40. |
116 | Leask S B, McDonell V G, Samuelsen S. Critical evaluation of momentum flux ratio relative to a liquid jet in crossflow[J]. Atomization and Sprays, 2018, 28(7): 599-620. |
117 | 周致富, 白飞龙, 王锐, 等. 带膨胀腔喷嘴制冷剂R134a闪蒸喷雾可视化研究[J]. 工程热物理学报, 2015, 36(12): 2646-2650. |
Zhou Z F, Bai F L, Wang R, et al. Visualization of the flashing spray generating by the expansion-chamber nozzle using R134a[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2646-2650. | |
118 | 马云雷, 马杰, 闫俐辰, 等. 闪蒸喷雾冷却工质雾化性能研究进展[J]. 炼油与化工, 2024, 35(1): 1-4. |
Ma Y L, Ma J, Yan L C, et al. Research progress on atomization performance of flash spray cooling working medium[J]. Refining and Chemical Industry, 2024, 35(1): 1-4. | |
119 | 王锐, 陈斌, 王嘉丰, 等. R1234yf瞬态喷雾冷却及过热度影响的实验研究[J]. 化工学报, 2018, 69(2): 595-601. |
Wang R, Chen B, Wang J F, et al. Experimental research of R1234yf transient spray cooling and influence of cryogen superheat degree[J]. CIESC Journal, 2018, 69(2): 595-601. | |
120 | 张志伟, 李强, 胡定华. R1336mzz闪蒸喷雾冷却传热特性的实验研究[J]. 工程热物理学报, 2022, 43(2): 506-510. |
Zhang Z W, Li Q, Hu D H. Experimental study on heat transfer characteristics of R1336mzz flash evaporation spray cooling[J]. Journal of Engineering Thermophysics, 2022, 43(2): 506-510. | |
121 | Liu L, Bi Q C, Li H X. Experimental investigation on flash evaporation of saltwater droplets released into vacuum[J]. Microgravity Science and Technology, 2009, 21(1): 255-260. |
122 | Zhang D, Chong D T, Yan J J, et al. Experimental study on static flash evaporation of aqueous NaCl solution[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 7199-7206. |
123 | Zhang D, Chong D T, Yan J J, et al. Experimental study on static flash evaporation of aqueous NaCl solution at different flash speed: heat transfer characteristics[J]. International Journal of Heat and Mass Transfer, 2013, 65: 584-591. |
124 | 程文龙, 胡磊, 陈华, 等. 真空闪蒸喷雾冷却中非等温液滴闪蒸特性的研究[J]. 真空科学与技术学报, 2015, 35(4): 399-404. |
Cheng W L, Hu L, Chen H, et al. Influence of characteristics of non-isothermal flashing droplet on vacuum flash-spray cooling[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(4): 399-404. | |
125 | Deng W W, Gomez A. Electrospray cooling for microelectronics[J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2270-2275. |
126 | Gibbons M J, Robinson A J. Heat transfer characteristics of single cone-jet electrosprays[J]. International Journal of Heat and Mass Transfer, 2017, 113: 70-83. |
127 | Wang H C, Mamishev A V. Optimization methodology for electrospray evaporative cooling chambers[J]. Journal of Electrostatics, 2012, 70(4): 384-392. |
128 | Zeleny J. Instability of electrified liquid surfaces[J]. Physical Review, 1917, 10(1): 1-6. |
129 | Taylor G I. Disintegration of water drops in an electric field[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1964, 280(1382): 383-397. |
130 | Jaworek A, Krupa A. Classification of the modes of EHD spraying[J]. Journal of Aerosol Science, 1999, 30(7): 873-893. |
131 | Feng X. Experimental and analytical study on two-phase impingement cooling with and without electric field[D]. Columbia: University of Missour, 2007. |
132 | Deng W W, Gomez A. The role of electric charge in microdroplets impacting on conducting surfaces[J]. Physics of Fluids, 2010, 22(5): 051703. |
133 | Gibbons M J, Robinson A J. Electrospray array heat transfer[J]. International Journal of Thermal Sciences, 2018, 129: 451-461. |
134 | Feng X, Bryan J E. Application of electrohydrodynamic atomization to two-phase impingement heat transfer[J]. Journal of Heat Transfer, 2008, 130(7): 072202. |
135 | Wang H C. Design methodology for the micronozzle-based electrospray evaporative cooling devices[J]. Journal of Electronics Cooling and Thermal Control, 2012, 2(2): 17-31. |
136 | Pratama R H, Moon S, Kim H H, et al. Application of electrostatic force for the atomization improvement of urea-water sprays in diesel SCR systems[J]. Fuel, 2020, 262: 116571. |
137 | Wang J F, Mao H M, Hwang W. Experimental investigation of electrostatic spray of twin-fluid atomization[J]. Chemical Engineering Communications, 2010, 197(2): 213-222. |
138 | Lee J, Kwon S, Kim S, et al. Effects of the electrohydrodynamic forces on characteristics of spray[J]. Journal of ILASS-Korea, 2001, 6(1): 44-51. |
139 | Grace J M, Marijnissen J C M. A review of liquid atomization by electrical means[J]. Journal of Aerosol Science, 1994, 25(6): 1005-1019. |
[1] | 范佳媛, 曾文慧, 任志超, 张文涛, 吕霜. 多熔点相变乳液的制备及性能强化研究[J]. 化工学报, 2025, 76(4): 1863-1874. |
[2] | 陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, 2025, 76(1): 131-140. |
[3] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[4] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[5] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
[6] | 陈引, 赵霄, 杜王芳, 杨竹强, 李凯, 赵建福. 喷雾冷却液膜流动特性测试方案优化及传热规律分析[J]. 化工学报, 2024, 75(8): 2734-2743. |
[7] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[8] | 黄金佐, 李兆华, 陈新文, 钱玉琪, 张萌, 周航, 赵修聪. 振动工况下喷雾冷却传热性能[J]. 化工学报, 2024, 75(12): 4523-4531. |
[9] | 刘邦金, 汪林威, 吴月月, 刘永超, 钟国彬, 项宏发. 锂离子电池热管理研究进展[J]. 化工学报, 2024, 75(12): 4413-4431. |
[10] | 李晓阳, 李东, 陶明磊, 周致富, 张灵怡, 苏力争, 张天宁, 李智, 陈斌. 多喷嘴喷雾冷却表面传热特性实验研究[J]. 化工学报, 2024, 75(1): 231-241. |
[11] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[12] | 蒋祎璠, 刘蕾, 赵耀, 代彦军. UVLED光学元件液冷散热系统性能研究[J]. 化工学报, 2023, 74(S1): 154-160. |
[13] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 157
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 330
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||