• •
任永恒(
), 王猛(
), 杨江峰, 陈杨(
), 李晋平, 李立博
收稿日期:2025-09-11
修回日期:2025-11-09
出版日期:2025-12-22
通讯作者:
王猛,陈杨
作者简介:任永恒(1997—),男,博士研究生,2023310193@link.tyut.edu.cn
基金资助:
Yongheng REN(
), Meng WANG(
), Jiangfeng YANG, Yang CHEN(
), Jinping LI, Libo LI
Received:2025-09-11
Revised:2025-11-09
Online:2025-12-22
Contact:
Meng WANG, Yang CHEN
摘要:
乙烯是加速果蔬衰败的关键激素,高效去除痕量乙烯对果蔬采后保鲜至关重要。本研究突破传统粉末吸附剂先改性后成型方式导致的活性位点易损与孔道堵塞问题,提出成型吸附剂温和后改性策略,以市售silicalite-1球形颗粒为基体,通过温和后处理银修饰,在保持球形颗粒完整性的同时,成功制备系列银负载吸附剂S-Ag-X。适量银负载的S-Ag-β在超低分压下的乙烯吸附量约为silicalite-1的15倍,并表现出更高的C2H4/CO2和C2H4/N2选择性。穿透实验表明,该材料在高湿和复杂气氛中仍具有优异乙烯吸附性能和循环稳定性。香蕉贮藏实验也验证了其可有效延长水果保质期。本研究为粉末吸附剂实际应用中的成型与性能兼顾难题提供了有效解决方案,具有较强的实际应用价值。
中图分类号:
任永恒, 王猛, 杨江峰, 陈杨, 李晋平, 李立博. 成型沸石的银后修饰策略用于痕量乙烯捕获[J]. 化工学报, DOI: 10.11949/0438-1157.20251025.
Yongheng REN, Meng WANG, Jiangfeng YANG, Yang CHEN, Jinping LI, Libo LI. Silver post-modification strategy of shaped zeolites for trace ethylene capture[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251025.
| 测定的Ag浓度/(mg/L) | 计算的Ag含量/wt% | |
|---|---|---|
| S-1 | - | - |
| S-Ag-α | 1.938 | 0.48 |
| S-Ag-β | 4.405 | 1.10 |
| S-Ag-γ | 6.121 | 1.53 |
| S-Ag-δ | 8.743 | 2.19 |
表1 ICP测定的S-Ag-X中的银含量
Table 1 Data of silver content in S-Ag-X measured by ICP
| 测定的Ag浓度/(mg/L) | 计算的Ag含量/wt% | |
|---|---|---|
| S-1 | - | - |
| S-Ag-α | 1.938 | 0.48 |
| S-Ag-β | 4.405 | 1.10 |
| S-Ag-γ | 6.121 | 1.53 |
| S-Ag-δ | 8.743 | 2.19 |
图4 (a)S-1和(b)S-Ag在273 K,298 K和313 K下的C2H4吸附等温线以及(c)计算的C2H4吸附热
Fig.4 C2H4 adsorption isotherms of (a) S-1 and (b) S-Ag at 273 K, 298 K, and 313 K, and (c) calculated C2H4 adsorption heat
图5 (a)S-1和(b)S-Ag-β在298K下的C2H4,CO2,N2和H2O的单组分吸附等温线。S-1和S-Ag-β在298K下的(c)C2H4/CO2(10/90,v/v)和(d)C2H4/N2(0.1/99.9,v/v)的IAST选择性
Fig.5 (a) S-1 and (b) S-Ag-β single-component adsorption isotherms of C2H4, CO2, N2, and H2O at 298 K. IAST selectivity of S-1 and S-Ag-β at 298 K for (c) C2H4/CO2 (10/90, v/v) and (d) C2H4/N2 (0.1/99.9, v/v)
图6 (a)在298 K和1 bar下S-1和S-Ag-β的C2H4/N2(0.1/99.9,v/v)穿透曲线对比;在298 K和1 bar下,S-Ag-β对于(b)干燥和(c)潮湿的C2H4/CO2/N2(0.1/1/98.9,v/v/v)三组分穿透曲线;(d)S-Ag-β潮湿条件下的三组分穿透循环
Fig.6 (a) Comparison of C2H4/N2 (0.1/99.9, v/v) breakthrough curves for S-1 and S-Ag-β at 298 K and 1 bar; breakthrough curves of S-Ag-β for (b) dry and (c) humid C2H4/CO2/N2 (0.1/1/98.9, v/v/v) mixed gas; (d) breakthrough cycle tests of S-Ag-β under humid conditions
| [1] | Kepinski S, Leyser O. SCF-mediated proteolysis and negative regulation in ethylene signaling[J]. Cell, 2003, 115(6): 647-648. |
| [2] | Keller N, Ducamp M N, Robert D, et al. Ethylene removal and fresh product storage: a challenge at the frontiers of chemistry. toward an approach by photocatalytic oxidation[J]. Chemical Reviews, 2013, 113(7): 5029-5070. |
| [3] | Burg S P, Burg E A. Ethylene action and the ripening of fruits[J]. Science, 1965, 148(3674): 1190-1196. |
| [4] | Pathak N, Caleb O J, Geyer M, et al. Photocatalytic and photochemical oxidation of ethylene: potential for storage of fresh produce—a review[J]. Food and Bioprocess Technology, 2017, 10(6): 982-1001. |
| [5] | Mwelase S, Adeyemi J O, Fawole O A. Recent advances in postharvest application of exogenous phytohormones for quality preservation of fruits and vegetables[J]. Plants, 2024, 13(22): 3255. |
| [6] | Jiang Y, Liu Z P, Peydayesh M, et al. Ethylene control in fruit quality assurance: a material science perspective[J]. Aggregate, 2024, 5(5): e565. |
| [7] | Sadeghi K, Lee Y, Seo J. Ethylene scavenging systems in packaging of fresh produce: a review[J]. Food Reviews International, 2021, 37(2): 155-176. |
| [8] | Xie J W, Situ W, Wang R, et al. The visible light photocatalytic degradation of ethylene using a polyvinyl alcohol film loaded with Ag2O-TiO2-Bi2WO6 heterojunction microspheres[J]. Applied Surface Science, 2022, 584: 152562. |
| [9] | Chen L Z, Xie X T, Song X L, et al. Photocatalytic degradation of ethylene in cold storage using the nanocomposite photocatalyst MIL101(Fe)-TiO2-rGO[J]. Chemical Engineering Journal, 2021, 424: 130407. |
| [10] | Nielsen M G, Vesborg P C K, Hansen O, et al. Removal of low concentration contaminant species using photocatalysis: Elimination of ethene to sub-ppm levels with and without water vapor present[J]. Chemical Engineering Journal, 2015, 262: 648-657. |
| [11] | Soares T R P, Reis A F, dos Santos J W S, et al. NaY-Ag zeolite chitosan coating kraft paper applied as ethylene scavenger packaging[J]. Food and Bioprocess Technology, 2023, 16(5): 1101-1115. |
| [12] | Dziedzic E, Błaszczyk J, Bieniasz M, et al. Effect of modified (MAP) and controlled atmosphere (CA) storage on the quality and bioactive compounds of blue honeysuckle fruits (Lonicera caerulea L.)[J]. Scientia Horticulturae, 2020, 265: 109226. |
| [13] | Cheng J H, Chen M, Sun D W. Ethylene synergism control using integrated cold plasma technologies to enhance fruit and vegetable quality[J]. Food Engineering Reviews, 2025, 17(1): 55-74. |
| [14] | Álvarez-Hernández M H, Artés-Hernández F, Ávalos-Belmontes F, et al. Current scenario of adsorbent materials used in ethylene scavenging systems to extend fruit and vegetable postharvest life[J]. Food and Bioprocess Technology, 2018, 11(3): 511-525. |
| [15] | Álvarez-Hernández M H, Martínez-Hernández G B, Avalos-Belmontes F, et al. Potassium permanganate-based ethylene scavengers for fresh horticultural produce as an active packaging[J]. Food Engineering Reviews, 2019, 11(3): 159-183. |
| [16] | Wang Y N, Xu J F, Iskakov R M, et al. Ethylene scavengers for extended freshness: a critical comparison between physisorption and chemistry process[J]. Applied Food Research, 2025, 5(2): 101267. |
| [17] | Lin R B, Li L B, Zhou H L, et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework[J]. Nature Materials, 2018, 17(12): 1128-1133. |
| [18] | 王涛虹, 王超, 李政, 等. 固载Cu(Ⅰ)的π络合MOF吸附剂用于乙烷/乙烯的选择性分离[J]. 化工学报, 2024, 75(7): 2565-2573. |
| Wang T H, Wang C, Li Z, et al. Immobilize Cu(Ⅰ) into π-complexed MOF adsorbent for selectivity separation of ethane/ethylene[J]. CIESC Journal, 2024, 75(7): 2565-2573. | |
| [19] | Chen F Q, Ding J Q, Guo K Q, et al. CoNi alloy nanoparticles embedded in metal–organic framework-derived carbon for the highly efficient separation of xenon and krypton via a charge-transfer effect[J]. Angewandte Chemie International Edition, 2021, 60(5): 2431-2438. |
| [20] | Li L B, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. |
| [21] | Chen Y, Wu Z D, Fan L L, et al. Direct ethylene purification from cracking gas via a metal–organic framework through pore geometry fitting[J]. Engineering, 2024, 41: 84-92. |
| [22] | Jiang Y C, Luo M F, Niu Z N, et al. In-situ growth of bimetallic FeCo-MOF on magnetic biochar for enhanced clearance of tetracycline and fruit preservation[J]. Chemical Engineering Journal, 2023, 451: 138804. |
| [23] | Li Y P, Zhao Y N, Li S N, et al. Ultrahigh-uptake capacity-enabled gas separation and fruit preservation by a new single-walled nickel–organic framework[J]. Advanced Science, 2021, 8(12): 2003141. |
| [24] | Kumar A, Gupta V, Singh S, et al. Pine needles lignocellulosic ethylene scavenging paper impregnated with nanozeolite for active packaging applications[J]. Industrial Crops and Products, 2021, 170: 113752. |
| [25] | 王恺华, 陈杨, 王毅, 等. 基于多氮唑配体制备金属有机框架用于乙炔吸附分离[J]. 科学通报, 2024, 69(16): 2278-2287. |
| Wang K H, Chen Y, Wang Y, et al. Synthesis of metal organic frameworks based on multiazole ligands for adsorption and separation of acetylene[J]. Chinese Science Bulletin, 2024, 69(16): 2278-2287. | |
| [26] | Zhang L, Wang Y, Chen Y, et al. Metal-organic frameworks for ethane-selective adsorption: a comprehensive review on structural design and separation applications[J]. Coordination Chemistry Reviews, 2025, 544: 216974. |
| [27] | Chopra S, Dhumal S, Abeli P, et al. Metal-organic frameworks have utility in adsorption and release of ethylene and 1-methylcyclopropene in fresh produce packaging[J]. Postharvest Biology and Technology, 2017, 130: 48-55. |
| [28] | Nian L Y, Wang M J, Wang F F, et al. Multifunctional material Cer@MHKUST-1 with efficient preservation capability[J]. Chemical Engineering Journal, 2022, 433: 133267. |
| [29] | An Y, Lv X L, Jiang W Y, et al. The stability of MOFs in aqueous solutions—research progress and prospects[J]. Green Chemical Engineering, 2024, 5(2): 187-204. |
| [30] | Li Y, Yu J H. New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations[J]. Chemical Reviews, 2014, 114(14): 7268-7316. |
| [31] | Ren Y H, Chen Y, Chen H W, et al. Electrostatically driven kinetic inverse CO2/C2H2 separation in LTA-type zeolites[J]. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394. |
| [32] | 陈彰旭, 姜伟, 陈志彬, 等. 壳聚糖复合物在水果保鲜中的应用研究进展[J]. 化工进展, 2011, 30(12): 2724-2727. |
| Chen Z X, Jiang W, Chen Z B, et al. Progress in application studies of chitosan complex on fruit refreshing[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2724-2727. | |
| [33] | Gueibe C, Rutten J, Camps J, et al. Silver-exchanged zeolites for collecting and separating xenon directly from atmospheric air[J]. Separation and Purification Technology, 2023, 323: 124433. |
| [34] | Li Y X, Shen J X, Peng S S, et al. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization[J]. Nature Communications, 2020, 11: 3206. |
| [35] | Qi Y, Yang H M, Li C L, et al. Trace ethylene adsorbents Ag/F-Z5(X) for improved preservation of fruits and vegetables: Enhanced adsorption and water resistance[J]. Separation and Purification Technology, 2024, 347: 127634. |
| [36] | Ferreira R, Lopes H, Lourenço J P, et al. Ethylene removal by Ag-based ZSM-5 adsorbents for the preservation of climacteric fruits[J]. Microporous and Mesoporous Materials, 2024, 370: 113055. |
| [37] | Ren Y H, Liu X H, Dai G G, et al. Smooth pore surface in zeolites for krypton capture under humid conditions[J]. Green Chemical Engineering, 2025, 6(4): 431-438. |
| [38] | Ren Y H, Chen Y, Yang J F, et al. In-situ silver-modification of Silicalite-1 for trace ethylene capture under humid conditions[J]. Applied Surface Science, 2023, 613: 156002. |
| [39] | Wang H, Liu Y T, Ren Y H, et al. Hydrophobic Silicalite-1@Ag+ based MMM for C2H4/C2H6 separation under long-period humid conditions[J]. Journal of Membrane Science, 2024, 696: 122521. |
| [40] | van Zandvoort I, van Klink G P M, de Jong E, et al. Selectivity and stability of zeolites [Ca] A and [Ag] A towards ethylene adsorption and desorption from complex gas mixtures[J]. Microporous and Mesoporous Materials, 2018, 263: 142-149. |
| [41] | Li Y H, Min X B, Li W H, et al. Experimental and computational evaluation of Ag-exchanged ZSM-5 and SSZ-13 for xenon capture[J]. Microporous and Mesoporous Materials, 2022, 330: 111631. |
| [42] | 尚华, 白洪灏, 刘佳奇, 等. CH4-N2在自支撑颗粒型Silicalite-1上的吸附分离及PSA模拟[J]. 化工学报, 2020, 71(5): 2088-2098. |
| Shang H, Bai H H, Liu J Q, et al. PSA simulation and adsorption separation of CH4-N2 by self-supporting pellets Silicalite-1[J]. CIESC Journal, 2020, 71(5): 2088-2098. | |
| [43] | Xiong Y, Tian T, L'Hermitte A, et al. Using silver exchange to achieve high uptake and selectivity for propylene/propane separation in zeolite Y[J]. Chemical Engineering Journal, 2022, 446: 137104. |
| [44] | Zhang H D, Wang Z W, Wang W D, et al. One-pot synthesis of Ag@silicalite-1 using different silver amine complexes and their performance for styrene oxidation[J]. New Journal of Chemistry, 2021, 45(45): 21293-21298. |
| [45] | Liu C W, Xin M D, Wang C L, et al. Ag2O nanoparticles encapsulated in Ag-exchanged LTA zeolites for highly selective separation of ethylene/ethane[J]. ACS Applied Nano Materials, 2023, 6(7): 5374-5383. |
| [46] | Li B Y, Zhang Y M, Krishna R, et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane[J]. Journal of the American Chemical Society, 2014, 136(24): 8654-8660. |
| [47] | Trinh Q H, Lee S B, Mok Y S. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite[J]. Journal of Hazardous Materials, 2015, 285: 525-534. |
| [48] | Uchida S, Kawamoto R, Tagami H, et al. Highly selective sorption of small unsaturated hydrocarbons by nonporous flexible framework with silver ion[J]. Journal of the American Chemical Society, 2008, 130(37): 12370-12376. |
| [49] | Monzón J D, Pereyra A M, Gonzalez M R, et al. Ethylene adsorption onto thermally treated AgA-Zeolite[J]. Applied Surface Science, 2021, 542: 148748. |
| [50] | Yang R T, Kikkinides E S. New sorbents for olefin/paraffin separations by adsorption via π-complexation[J]. AIChE Journal, 1995, 41(3): 509-517. |
| [51] | Evans H A, Mullangi D, Deng Z Y, et al. Aluminum formate, Al(HCOO)3: an earth-abundant, scalable, and highly selective material for CO2 capture[J]. Science Advances, 2022, 8(44): eade1473. |
| [52] | Liu S S, Chen Y L, Yue B, et al. Cascade adsorptive separation of light hydrocarbons by commercial zeolites[J]. Journal of Energy Chemistry, 2022, 72: 299-305. |
| [1] | 吴梓航, 徐震原, 游锦方, 潘权稳, 王如竹. 基于吸附式储冷技术的深井钻探设备冷却系统[J]. 化工学报, 2025, 76(S1): 309-317. |
| [2] | 田宇红, 杜壮壮, 徐慧芳, 祝自强, 王宇聪. ZIF-8基多孔液体制备及其SO2吸附性能[J]. 化工学报, 2025, 76(8): 4284-4296. |
| [3] | 史松伟, 赵诚, 刘帅, 应雨轩, 严密. 富铁飞灰耦合Fe-Zn/Al2O3脱除沼气H2S研究[J]. 化工学报, 2025, 76(8): 4239-4247. |
| [4] | 陶春珲, 李印辉, 傅钰, 段然, 赵泽一, 唐羽丰, 张罡, 马和平. 不同吸附剂对低浓度Kr气的选择性吸附与纯化[J]. 化工学报, 2025, 76(5): 2358-2366. |
| [5] | 郭彭涛, 王婷, 薛波, 应允攀, 刘大欢. 用于CH4/N2分离的多吸附位点超微孔MOF[J]. 化工学报, 2025, 76(5): 2304-2312. |
| [6] | 巴雅琪, 吴涛, 邸安頔, 陆安慧. 多孔炭材料用于低碳烃分离的研究进展[J]. 化工学报, 2025, 76(5): 2136-2157. |
| [7] | 谈朋, 李雪梅, 刘晓勤, 孙林兵. 基于柔性MOFs的磁响应复合材料及其丙烯吸附性能研究[J]. 化工学报, 2025, 76(5): 2230-2240. |
| [8] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
| [9] | 石美玉, 赵波琛, 束远, 牛强, 张鹏飞. 盐模板法制备多孔碳酸钙及其CO2吸附特性研究[J]. 化工学报, 2025, 76(11): 6086-6099. |
| [10] | 邹立, 马砺, 张鹏宇, 魏高明, 郭睿智, 赵钦新. 煅烧电石渣强化生物质气化制氢特性及其反应动力学研究[J]. 化工学报, 2025, 76(11): 6040-6057. |
| [11] | 陈彦霖, 周爱国, 郑家乐, 杨川箬, 葛天舒. 载体对于胺浸渍类DAC吸附剂性能的影响[J]. 化工学报, 2024, 75(S1): 217-222. |
| [12] | 王靖宇, 刘佳, 徐继香, 王磊. 薄片状PtZn@Silicalite-1分子筛的合成及催化丙烷脱氢性能研究[J]. 化工学报, 2024, 75(9): 3188-3197. |
| [13] | 唐宇昊, 张迎迎, 赵智伟, 鲁梦悦, 张飞飞, 王小青, 杨江峰. 弱极性超微孔Sc/In-CPM-66A用于CH4/N2吸附分离性能[J]. 化工学报, 2024, 75(9): 3210-3220. |
| [14] | 王涛虹, 王超, 李政, 刘莹, 田歌, 常刚刚, 阳晓宇, 鲍宗必. 固载Cu(Ⅰ)的π络合MOF吸附剂用于乙烷/乙烯的选择性分离[J]. 化工学报, 2024, 75(7): 2565-2573. |
| [15] | 王岩, 周佳文, 孙培亮, 陈勇, 齐元红, 彭冲. 磁性聚氨基噻唑吸附剂脱除水体Hg2+性能[J]. 化工学报, 2024, 75(6): 2283-2298. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号