CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4519-4527.DOI: 10.11949/0438-1157.20190928
• Reviews and monographs • Previous Articles Next Articles
Wenjin WANG1,2,3(),Ying XU1,2(),Dongling WANG1,2,3,Chenguang WANG1,2,Longlong MA1,2
Received:
2019-08-13
Revised:
2019-09-26
Online:
2019-12-05
Published:
2019-12-05
Contact:
Ying XU
王文锦1,2,3(),徐莹1,2(),王东玲1,2,3,王晨光1,2,马隆龙1,2
通讯作者:
徐莹
作者简介:
王文锦(1995—),男,硕士研究生,基金资助:
CLC Number:
Wenjin WANG,Ying XU,Dongling WANG,Chenguang WANG,Longlong MA. Progress in solvent and catalyst for hydrogenolysis of lignin[J]. CIESC Journal, 2019, 70(12): 4519-4527.
王文锦,徐莹,王东玲,王晨光,马隆龙. 木质素氢解反应溶剂与催化剂研究进展[J]. 化工学报, 2019, 70(12): 4519-4527.
Add to citation manager EndNote|Ris|BibTeX
Solvent | Catalyst | Reaction conditions | Reactant | Product | Conversion/% | Selectivity/% |
---|---|---|---|---|---|---|
basic water | NiAl alloy | 220℃,Ar | poplar wood lignin | monomer+oligomer | 86.8 | 18.9 |
basic water | Ni/ZSM-5 | 200℃,4 MPa | OKL | bio-oil | 83 | — |
water | Pd1Ni4/MIL-100(Fe) | 180℃,6 h | organosolv lignin | phenol and guaiacol derivates | 100 | — |
methanol | Raney Ni | 300℃,8 h | organosolv lignin | unsaturates | 86 | — |
methanol | Pd/C+CrCl3 | 300℃,4 h | hydrolysis lignin | monomer | 81.4 | 26.3 |
ethanol | Ru/C | 300℃,10 h | lignin | oil | — | 75.8 |
ethanol | Ni/Al-SBA-15 | 300℃,4 h | hydrolysis lignin | phenolic monomers | >90 | 21.9 |
2-propanol | Raney Ni | 300℃,8 h | organosolv lignin | saturates | 91 | — |
isopropanol | Ni-Cu/H-Beta | 330℃,3 h | lignin | monomer | 98.8 | 50.83 |
isopropanol | Pt Re/TiO2 | 240℃,He | lignin | monomer phenol | — | 18.7 |
ethanol/1,4-dioxane | formic | 300℃,2 h | kraft lignin | monomer phenol | — | 22.4 |
SC-ethanol/phenol | Cu Ni Al | 290℃,3 h | alkali lignin | bio-oil | 81.8 | — |
Table 1 Solvent for hydrogenolysis of lignin
Solvent | Catalyst | Reaction conditions | Reactant | Product | Conversion/% | Selectivity/% |
---|---|---|---|---|---|---|
basic water | NiAl alloy | 220℃,Ar | poplar wood lignin | monomer+oligomer | 86.8 | 18.9 |
basic water | Ni/ZSM-5 | 200℃,4 MPa | OKL | bio-oil | 83 | — |
water | Pd1Ni4/MIL-100(Fe) | 180℃,6 h | organosolv lignin | phenol and guaiacol derivates | 100 | — |
methanol | Raney Ni | 300℃,8 h | organosolv lignin | unsaturates | 86 | — |
methanol | Pd/C+CrCl3 | 300℃,4 h | hydrolysis lignin | monomer | 81.4 | 26.3 |
ethanol | Ru/C | 300℃,10 h | lignin | oil | — | 75.8 |
ethanol | Ni/Al-SBA-15 | 300℃,4 h | hydrolysis lignin | phenolic monomers | >90 | 21.9 |
2-propanol | Raney Ni | 300℃,8 h | organosolv lignin | saturates | 91 | — |
isopropanol | Ni-Cu/H-Beta | 330℃,3 h | lignin | monomer | 98.8 | 50.83 |
isopropanol | Pt Re/TiO2 | 240℃,He | lignin | monomer phenol | — | 18.7 |
ethanol/1,4-dioxane | formic | 300℃,2 h | kraft lignin | monomer phenol | — | 22.4 |
SC-ethanol/phenol | Cu Ni Al | 290℃,3 h | alkali lignin | bio-oil | 81.8 | — |
Catalyst | Reaction condition | Reactant | Product | Conversion/% | Selectivity/% |
---|---|---|---|---|---|
Pd/C+CrCl3 | 280℃,5 h | alkali lignin | monophenols | — | 28.5 |
Ni/Al-SBA-15 | 300℃,4 h | hydrolysis lignin | monophenol | >90 | 21.9 |
Co-phen/C | 200℃,2 h | birch lignin | monophenol | — | 34 |
Ni7Au3 | 170℃,12 h | organoslov lignin | aromatic monomers | — | 14 |
Pd Ni/ZrO2 | 80℃,6 h | model compounds | aromatic monomers | >80 | — |
Pt Re/TiO2 | 240℃,12 h | birch lignin | monophenol | — | 18.71 |
Ni Fe/AC | 225℃,2 MPa H2 | organosolv lignin | monophenol | — | 23.2 |
Au1Pd1/CeO2 | 180℃,6 h | organosolv lignin | monophenol | — | 44.1 |
Table 2 Heterogeneous catalyst of lignin hydrogenolysis
Catalyst | Reaction condition | Reactant | Product | Conversion/% | Selectivity/% |
---|---|---|---|---|---|
Pd/C+CrCl3 | 280℃,5 h | alkali lignin | monophenols | — | 28.5 |
Ni/Al-SBA-15 | 300℃,4 h | hydrolysis lignin | monophenol | >90 | 21.9 |
Co-phen/C | 200℃,2 h | birch lignin | monophenol | — | 34 |
Ni7Au3 | 170℃,12 h | organoslov lignin | aromatic monomers | — | 14 |
Pd Ni/ZrO2 | 80℃,6 h | model compounds | aromatic monomers | >80 | — |
Pt Re/TiO2 | 240℃,12 h | birch lignin | monophenol | — | 18.71 |
Ni Fe/AC | 225℃,2 MPa H2 | organosolv lignin | monophenol | — | 23.2 |
Au1Pd1/CeO2 | 180℃,6 h | organosolv lignin | monophenol | — | 44.1 |
1 | George W, Huber S I. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chem. Rev., 2006, 106: 4044-4098. |
2 | Achyuthan K E, Achyuthan A M, Adams P D, et al. Supramolecular self-assembled chaos: polyphenolic lignin s barrier to cost-effective lignocellulosic biofuels[J]. Molecules, 2010, 15(12): 8641-8688. |
3 | 龙金星, 徐莹, 王铁军, 等. 木质素催化解聚与氢解[J]. 新能源进展, 2014, 2(2): 83-88. |
Long J X, Xu Y, Wang T J, et al. Catalytic depolymerization and hydrogenolysis of lignin[J]. Advances in New and Renewable Energy, 2014,2(2): 83-88. | |
4 | 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5): 838-858. |
Lu Y, Wei X Y, Zong Z M, et al. Structural investigation and application of lignins[J]. Progress in Chemistry, 2013,25(5): 838-858. | |
5 | Li C, Zhao X, Wang A, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem. Rev., 2015, 115(21): 11559-11624. |
6 | Yue F X, Lu F C, Sun R C, et al. Synthesis and characterization of new 5-linked pinoresinol lignin models[J]. Chemistry-A European Journal, 2012, 18(51): 16402-16410. |
7 | Manara P, Zabaniotou A, Vanderghem C, et al. Lignin extraction from Mediterranean agro-wastes: impact of pretreatment conditions on lignin chemical structure and thermal degradation behavior[J]. Catalysis Today, 2014, 223: 25-34. |
8 | Klein A P, Beach E S, Emerson J W, et al. Accelerated solvent extraction of lignin from Aleurites moluccana (Candlenut) nutshells[J]. Journal of Agricultural and Food Chemistry, 2010, 58(18): 10045-10048. |
9 | Hu L, Pan H, Zhou Y, et al. Methods to improve lignin s reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review[J]. Bioresources, 2011, 6(3): 3515-3525. |
10 | Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews, 2010, 110(6): 3552-3599. |
11 | 隋鑫金. 工业木质素催化液化制备酚类化学品的研究[D]. 广州: 华南理工大学, 2011. |
Sui X J. Study on the catalytic liquefaction of industrial kraft lignin for the production of phenols[D]. Guangzhou: South China University of Technology, 2011. | |
12 | 赵媛媛. 木质素在不同水热环境中的解聚特性及产物形成规律研究[D]. 广州:华南理工大学, 2017. |
Zhao Y Y. Study on depolymerization characteristics and product formation of lignin in different hydrothermal conditions[D]. Guangzhou: South China University of Technology,2017. | |
13 | Pandey M P, Kim C S. Lignin depolymerization and conversion: a review of thermochemical methods[J]. Chemical Engineering & Technology, 2011, 34(1): 29-41. |
14 | Gasser C A, Hommes G, Schaeffer A, et al. Multi-catalysis reactions: new prospects and challenges of biotechnology to valorize lignin[J]. Applied Microbiology and Biotechnology, 2012, 95(5): 1115-1134. |
15 | Chatel G, Rogers R D. Review: oxidation of lignin using ionic liquids—an innovative strategy to produce renewable chemicals[J]. ACS Sustainable Chemistry & Engineering, 2013, 2(3): 322-339. |
16 | Behling R, Valange S, Chatel G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: What results? What limitations? What trends?[J]. Green Chemistry, 2016, 18(7): 1839-1854. |
17 | Kang S, Li X, Fan J, et al. Hydrothermal conversion of lignin: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 546-558. |
18 | Shen D, Jin W, Hu J, et al. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 761-774. |
19 | Carpenter D, Westover T L, Czernik S, et al. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors[J]. Green Chemistry, 2014, 16(2): 384-406. |
20 | Li S H, Liu S, Colmenares J C, et al. A sustainable approach for lignin valorization by heterogeneous photocatalysis[J]. Green Chemistry, 2016, 18(3): 594-607. |
21 | Xu C P, Arancon R A D, Labidi J, et al. Lignin depolymerisation strategies: towards valuable chemicals and fuels[J]. Chemical Society Reviews, 2014, 43(22): 7485-7500. |
22 | Deuss P J, Barta K, De Vries J G. Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals[J]. Catalysis Science & Technology, 2014, 4(5): 1174-1196. |
23 | Espro C, Gumina B, Paone E, et al. Upgrading lignocellulosic biomasses: hydrogenolysis of platform derived molecules promoted by heterogeneous Pd-Fe catalysts[J]. Catalysts, 2017, 7(3):78. |
24 | Crestini C, Dauria M. Singlet oxygen in the photodegradation of lignin models[J]. Tetrahedron, 1997, 53(23): 7877-7888. |
25 | 张颖, 翟勇祥. 木质素的催化加氢转化[J]. 化工学报, 2017, 68(3): 821-830. |
Zhang Y, Zhai Y X. Catalytic hydroprocessing of lignin[J]. CIESC Journal, 2017, 68(3): 821-830. | |
26 | Gillet S, Aguedo M, Petitjean L, et al. Lignin transformations for high value applications: towards targeted modifications using green chemistry[J]. Green Chemistry, 2017, 19(18): 4200-4233. |
27 | Duval A, Lawoko M. A review on lignin-based polymeric, micro- and nano-structured materials[J]. Reactive and Functional Polymers, 2014, 85: 78-96. |
28 | Zakzeski J. The catalytic valorization of lignin for the production of renewable chemicals[J]. ACS Sustainable Chemistry & Engineering,2010, 110: 3552-3599. |
29 | Fu C X, Mielenz J R, Xiao X R, et al. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3803-3808. |
30 | Chen F, Dixon R A. Lignin modification improves fermentable sugar yields for biofuel production[J]. Nature Biotechnology, 2007, 25: 759. |
31 | Luo H, Abu-Omar M M. Lignin extraction and catalytic upgrading from genetically modified poplar[J]. Green Chemistry, 2018, 20(3): 745-753. |
32 | Wang X, Rinaldi R. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin[J]. ChemSusChem, 2012, 5(8): 1455-1466. |
33 | Konnerth H, Zhang J, Ma D, et al. Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water[J]. Chemical Engineering Science, 2015, 123: 155-163. |
34 | Wang D, Wang Y Y, Li X Y, et al. Lignin valorization: a novel in situ catalytic hydrogenolysis method in alkaline aqueous solution[J]. Energy & Fuels, 2018, 32(7): 7643-7651. |
35 | Qi S C, Hayashi J I, Kudo S, et al. Catalytic hydrogenolysis of kraft lignin to monomers at high yield in alkaline water[J]. Green Chemistry, 2017, 19(11): 2636-2645. |
36 | Zhang J W, Lu G P, Cai C. Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd–Ni BMNPs[J]. Green Chemistry, 2017, 19(19): 4538-4543. |
37 | Li C, Zheng M, Wang A, et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin[J]. Energy Environ. Sci., 2012, 5(4): 6383-6390. |
38 | Nimmanwudipong T, Runnebaum R C, Block D E, et al. Catalytic conversion of guaiacol catalyzed by platinum supported on alumina: reaction network including hydrodeoxygenation reactions[J]. Energy & Fuels, 2011, 25(8): 3417-3427. |
39 | Shu R, Zhang Q, Ma L, et al. Insight into the solvent, temperature and time effects on the hydrogenolysis of hydrolyzed lignin[J]. Bioresour. Technol., 2016, 221: 568-575. |
40 | Huang X, Koranyi T I, Boot M D, et al. Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics[J]. Green Chemistry, 2015, 17(11): 4941-4950. |
41 | Ma R, Hao W, Ma X, et al. Catalytic ethanolysis of kraft lignin into high-value small-molecular chemicals over a nanostructured alpha-molybdenum carbide catalyst[J]. Angewandte Chemie-International Edition, 2014, 53(28): 7310-7315. |
42 | Oregui-Bengoechea M, Gandarias I, Arias P L, et al. Solvent and catalyst effect in the formic acid aided lignin-to-liquids[J]. Bioresour. Technol., 2018, 270: 529-536. |
43 | Chen P, Zhang Q, Shu R, et al. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts[J]. Bioresource Technology, 2017, 226: 125-131. |
44 | Kong L, Liu C, Gao J, et al. Efficient and controllable alcoholysis of kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst[J]. Bioresour. Technol., 2019, 276: 310-317. |
45 | Hu J, Zhang S, Xiao R, et al. Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source[J]. Bioresour. Technol., 2019, 279: 228-233. |
46 | Shu R, Long J, Yuan Z, et al. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C[J]. Bioresour. Technol., 2015, 179: 84-90. |
47 | Cheng C, Shen D, Gu S, et al. State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals[J]. Catalysis Science & Technology, 2018, 8(24): 6275-6296. |
48 | Marcus Y. The properties of organic liquids that are relevant to their use as solvating solvents[J]. Chemical Society Reviews, 1993, 22(6): 409-416. |
49 | Toledano A, Serrano L, Labidi J, et al. Heterogeneously catalysed mild hydrogenolytic depolymerisation of lignin under microwave irradiation with hydrogen-donating solvents[J]. ChemCatChem, 2013, 5(4): 977-985. |
50 | Oregui-Bengoechea M, Gandarias I, Arias P L, et al. Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: a holistic approach[J]. ChemSusChem, 2017, 10(4): 754-766. |
51 | Wu Z, Zhao X, Zhang J, et al. Ethanol/1,4-dioxane/formic acid as synergistic solvents for the conversion of lignin into high-value added phenolic monomers[J]. Bioresour. Technol., 2019, 278: 187-194. |
52 | Saisu M, Sato T, Watanabe M, et al. Conversion of lignin with supercritical water-phenol mixtures[J]. Energy & Fuels, 2003, 17: 922-928. |
53 | Zhou M, Sharma B K, Liu P, et al. Catalytic in situ hydrogenolysis of lignin in supercritical ethanol: effect of phenol, catalysts, and reaction temperature[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6867-6875. |
54 | Cheng S, cruz I D, Wang M, et al. Highly efficient liquefaction of woody biomass in hot-compressed alcohol-water co-solvents[J]. Energy & Fuels, 2010, 24(9): 4659-4667. |
55 | Barrett J A, Gao Y, Bernt C M, et al. Enhancing aromatic production from reductive lignin disassembly: in situo-methylation of phenolic intermediates[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6877-6886. |
56 | Gosselink R J, Teunissen W, Van Dam J E, et al. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals[J]. Bioresour. Technol., 2012, 106: 173-177. |
57 | Huang X, Ouyang X, Hendriks B M S, et al. Selective production of mono-aromatics from lignocellulose over Pd/C catalyst: the influence of acid co-catalysts[J]. Faraday Discussions, 2017, 202: 141-156. |
58 | Zhang X, Zhang Q, Long J, et al. Phenolics production through catalytic depolymerization of alkali lignin with metal chlorides[J]. Bioresources, 2014, 9(2): 3347-3360. |
59 | Hidajat M J, Riaz A, Park J, et al. Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids[J]. Chemical Engineering Journal, 2017, 317: 9-19. |
60 | Sergeev A G, Webb J D, Hartwig J F. A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation[J]. J. Am. Chem. Soc., 2012, 134(50): 20226-20229. |
61 | Sergeev A G, Hartwig J F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers[J]. Science, 2011, 332: 439-443. |
62 | Van Den Bosch S, Schutyser W, Vanholme R, et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J]. Energy & Environmental Science, 2015, 8(6): 1748-1763. |
63 | Xu W, Miller S J, Agrawal P K, et al. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid[J]. ChemSusChem, 2012, 5(4): 667-675. |
64 | Barta K, Warner G R, Beach E S, et al. Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides[J]. Green Chemistry, 2014, 16(1): 191-196. |
65 | Warner G, Hansen T S, Riisager A, et al. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol[J]. Bioresource Technology, 2014, 161: 78-83. |
66 | Yang Z, Wei X Y, Zhang M, et al. Catalytic hydroconversion of aryl ethers over a nickel catalyst supported on acid-modified zeolite 5A[J]. Fuel Processing Technology, 2018, 177: 345-352. |
67 | Zhu C, Cao J P, Zhao X Y, et al. Mechanism of Ni-catalyzed selective C—O cleavage of lignin model compound benzyl phenyl ether under mild conditions[J]. Journal of the Energy Institute, 2019, 92(1): 74-81. |
68 | Yadagiri J, Koppadi K S, Enumula S S, et al. Ni/KIT-6 catalysts for hydrogenolysis of lignin-derived diphenyl ether[J]. Journal of Chemical Sciences, 2018, 130(8): 106-112. |
69 | Macala G S, Matson T D, Johnson C L, et al. Hydrogen transfer from supercritical methanol over a solid base catalyst: a model for lignin depolymerization[J]. ChemSusChem, 2009, 2(3): 215-217. |
70 | Barta K, Matson T D, Fettig M L, et al. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J]. Green Chemistry, 2010, 12: 1640-1647. |
71 | Barta K, Ford P C. Catalytic conversion of nonfood woody biomass solids to organic liquids[J]. Acc. Chem. Res., 2014, 47(5): 1503-1512. |
72 | Rautiainen S, Di Francesco D, Katea S N, et al. Lignin valorization by cobalt-catalyzed fractionation of lignocellulose to yield monophenolic compounds[J]. ChemSusChem, 2019, 12(2): 404-408. |
73 | Zhang J, Asakura H, Van Rijn J, et al. Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals[J]. Green Chemistry, 2014, 16(5): 2432-2437. |
74 | Zhang J W, Cai Y, Lu G P, et al. Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd-Ni bimetallic nanoparticles supported on ZrO2[J]. Green Chemistry, 2016, 18(23): 6229-6235. |
75 | Zhai Y, Li C, Xu G, et al. Depolymerization of lignin via a non-precious Ni–Fe alloy catalyst supported on activated carbon[J]. Green Chemistry, 2017, 19(8): 1895-1903. |
76 | Mavrikakis M, Hammer B, Norskov J K. Effect of strain on the reactivity of metal surfaces[J]. Physical Review Letters, 1998, 81(13): 2819-2822. |
77 | Gao X, Zhu S, Li Y. Selective hydrogenolysis of lignin and model compounds to monophenols over AuPd/CeO2[J]. Molecular Catalysis, 2019, 462: 69-76. |
[1] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[5] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[6] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[7] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[8] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[9] | Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel [J]. CIESC Journal, 2023, 74(8): 3572-3583. |
[10] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[11] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[12] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[13] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||