CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 811-820.DOI: 10.11949/0438-1157.20191156
• Energy and environmental engineering • Previous Articles Next Articles
Ning MAO1,Qiang WANG1,Yan YANG1,Dunxin XU2,Wei FENG1,Jinpeng ZHANG1,Hongcun BAI1(),Qingjie GUO1
Received:
2019-10-10
Revised:
2019-11-08
Online:
2020-02-05
Published:
2020-02-05
Contact:
Hongcun BAI
毛宁1,王强1,杨妍1,徐敦信2,冯炜1,张金鹏1,白红存1(),郭庆杰1
通讯作者:
白红存
基金资助:
CLC Number:
Ning MAO, Qiang WANG, Yan YANG, Dunxin XU, Wei FENG, Jinpeng ZHANG, Hongcun BAI, Qingjie GUO. Pyrolysis characteristics and kinetics analysis of Qinghua coal, Ningxia based on chemical bonding characteristics of macerals[J]. CIESC Journal, 2020, 71(2): 811-820.
毛宁, 王强, 杨妍, 徐敦信, 冯炜, 张金鹏, 白红存, 郭庆杰. 基于显微组分化学键特征的宁夏庆华煤热解特性及动力学分析[J]. 化工学报, 2020, 71(2): 811-820.
Add to citation manager EndNote|Ris|BibTeX
Sample | Proximate analysis/%(mass) | Petrographic analysis/%(vol) | ||||||
---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | FCad | Vitrinite | Inertinite | Exinite | Minerals | |
QH | 0.86 | 10.81 | 19.70 | 71.62 | 88.4 | 7.8 | 0 | 3.8 |
Table 1 Proximate and petrographic analyses of coal sample
Sample | Proximate analysis/%(mass) | Petrographic analysis/%(vol) | ||||||
---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | FCad | Vitrinite | Inertinite | Exinite | Minerals | |
QH | 0.86 | 10.81 | 19.70 | 71.62 | 88.4 | 7.8 | 0 | 3.8 |
Sample | Ultimate analysis/%(mass,daf) | ||||
---|---|---|---|---|---|
C | H | O | N | S | |
vitrinite | 86.62 | 5.25 | 5.47 | 1.59 | 1.07 |
inertinite | 86.24 | 5.02 | 6.49 | 1.37 | 0.88 |
Table 2 Ultimate analysis of coal samples
Sample | Ultimate analysis/%(mass,daf) | ||||
---|---|---|---|---|---|
C | H | O | N | S | |
vitrinite | 86.62 | 5.25 | 5.47 | 1.59 | 1.07 |
inertinite | 86.24 | 5.02 | 6.49 | 1.37 | 0.88 |
Peak | Possible origin | Peak temperature range/℃ | Bond energy range/(kJ/mol) |
---|---|---|---|
1,2 | release of bonded water and decomposition of carboxylic acid | <300 | <150 |
3 | breakage of bonds between Cal and O, S and N, and S—S | 300—420 | 150—230 |
4 | breakage of bonds between Cal and Cal, H, O and Car—N | 420—550 | 210—320 |
5 | breakage of bonds between Car and Cal, O and S decomposition of carbonates in coals to generate CO2 | 550—715 | 300—430 |
6 | condensation of aromatic rings to release H2 | 715—900 | >400 |
Table 3 Chemical bond assignment of peaks from DTG profile
Peak | Possible origin | Peak temperature range/℃ | Bond energy range/(kJ/mol) |
---|---|---|---|
1,2 | release of bonded water and decomposition of carboxylic acid | <300 | <150 |
3 | breakage of bonds between Cal and O, S and N, and S—S | 300—420 | 150—230 |
4 | breakage of bonds between Cal and Cal, H, O and Car—N | 420—550 | 210—320 |
5 | breakage of bonds between Car and Cal, O and S decomposition of carbonates in coals to generate CO2 | 550—715 | 300—430 |
6 | condensation of aromatic rings to release H2 | 715—900 | >400 |
Sample | I1 | I2 | I3 | CH2/CH3 |
---|---|---|---|---|
vitrinite | 1.19 | 2.16 | 0.34 | 3.81 |
inertinite | 1.12 | 1.68 | 0.71 | 2.79 |
Table 4 Structural parameters derived from FTIR of coal macerals
Sample | I1 | I2 | I3 | CH2/CH3 |
---|---|---|---|---|
vitrinite | 1.19 | 2.16 | 0.34 | 3.81 |
inertinite | 1.12 | 1.68 | 0.71 | 2.79 |
Sample | Relative content of carbon species/% | |||
---|---|---|---|---|
C—C/C—H | C—O | C | O | |
vitrinite | 76.58 | 13.85 | 5.67 | 3.90 |
inertinite | 75.87 | 12.10 | 6.18 | 5.85 |
Table 5 Fraction of C on vitrinite and inertinite
Sample | Relative content of carbon species/% | |||
---|---|---|---|---|
C—C/C—H | C—O | C | O | |
vitrinite | 76.58 | 13.85 | 5.67 | 3.90 |
inertinite | 75.87 | 12.10 | 6.18 | 5.85 |
Sample | Relative content of oxygen species/% | ||||
---|---|---|---|---|---|
Inorganic oxygen | C | C—O | O | Adsorbed oxygen | |
vitrinite | 1.25 | 13.35 | 74.07 | 8.64 | 2.69 |
inertinite | 1.35 | 17.66 | 61.92 | 15.12 | 3.95 |
Table 6 Fraction of O on vitrinite and inertinite
Sample | Relative content of oxygen species/% | ||||
---|---|---|---|---|---|
Inorganic oxygen | C | C—O | O | Adsorbed oxygen | |
vitrinite | 1.25 | 13.35 | 74.07 | 8.64 | 2.69 |
inertinite | 1.35 | 17.66 | 61.92 | 15.12 | 3.95 |
Td/℃ | T/℃ | E/(kJ/mol) | A/min-1 | R2 | |||
---|---|---|---|---|---|---|---|
Vitrinite | Inertinite | Vitrinite | Inertinite | Vitrinite | Inertinite | ||
750 | 180—420 | 17.26 | 10.97 | 3.37 | 2.88 | 0.9949 | 0.9886 |
420—550 | 79.78 | 83.91 | 16618.86 | 7761.03 | 0.9930 | 0.9893 | |
550—715 | 34.84 | 35.68 | 12.76 | 14.68 | 0.9868 | 0.9747 | |
800 | 180—420 | 11.89 | 15.26 | 4.17 | 3.86 | 0.9866 | 0.9808 |
420—550 | 72.10 | 77.60 | 17277.45 | 8800.29 | 0.9933 | 0.9932 | |
550—715 | 37.93 | 33.35 | 11.64 | 10.63 | 0.9979 | 0.9967 | |
850 | 180—420 | 18.25 | 15.70 | 3.74 | 4.64 | 0.9871 | 0.9911 |
420—550 | 73.43 | 74.07 | 18579.39 | 7999.22 | 0.9928 | 0.9857 | |
550—715 | 33.84 | 38.26 | 11.23 | 18.26 | 0.9969 | 0.9972 | |
900 | 180—420 | 13.63 | 13.82 | 6.01 | 3.86 | 0.9893 | 0.9970 |
420—550 | 76.01 | 76.98 | 16154.16 | 8386.05 | 0.9918 | 0.9843 | |
550—715 | 33.82 | 37.55 | 12.63 | 10.25 | 0.9936 | 0.9970 |
Table 7 Pyrolysis kinetic parameters of coal samples under different final temperatures
Td/℃ | T/℃ | E/(kJ/mol) | A/min-1 | R2 | |||
---|---|---|---|---|---|---|---|
Vitrinite | Inertinite | Vitrinite | Inertinite | Vitrinite | Inertinite | ||
750 | 180—420 | 17.26 | 10.97 | 3.37 | 2.88 | 0.9949 | 0.9886 |
420—550 | 79.78 | 83.91 | 16618.86 | 7761.03 | 0.9930 | 0.9893 | |
550—715 | 34.84 | 35.68 | 12.76 | 14.68 | 0.9868 | 0.9747 | |
800 | 180—420 | 11.89 | 15.26 | 4.17 | 3.86 | 0.9866 | 0.9808 |
420—550 | 72.10 | 77.60 | 17277.45 | 8800.29 | 0.9933 | 0.9932 | |
550—715 | 37.93 | 33.35 | 11.64 | 10.63 | 0.9979 | 0.9967 | |
850 | 180—420 | 18.25 | 15.70 | 3.74 | 4.64 | 0.9871 | 0.9911 |
420—550 | 73.43 | 74.07 | 18579.39 | 7999.22 | 0.9928 | 0.9857 | |
550—715 | 33.84 | 38.26 | 11.23 | 18.26 | 0.9969 | 0.9972 | |
900 | 180—420 | 13.63 | 13.82 | 6.01 | 3.86 | 0.9893 | 0.9970 |
420—550 | 76.01 | 76.98 | 16154.16 | 8386.05 | 0.9918 | 0.9843 | |
550—715 | 33.82 | 37.55 | 12.63 | 10.25 | 0.9936 | 0.9970 |
1 | Li P, Zong Z M, Wei X Y, et al. Structural features of liquefaction residue from Shenmu-Fugu subbituminous coal[J]. Fuel, 2019, 242: 819-827. |
2 | 史航, 靳立军, 魏宝勇, 等. 大柳塔煤及显微组分在不同气氛下的热解行为[J]. 煤炭学报, 2019, 44(1): 316-322. |
Shi H, Jin L J, Wei B Y, et al. Pyrolysis behavior of Daliuta coal and its macerals under different atmospheres [J]. Journal of China Coal Society, 2019, 44(1): 316-322. | |
3 | 赵云鹏, 胡浩权, 靳立军, 等. 矿物质对不同还原程度煤显微组分半焦燃烧特性影响[J]. 化工学报, 2019, 70(8): 2946-2953. |
Zhao Y P, Hu H Q, Jin L J, et al. Effect of minerals on semi-coke combustion characteristics of maceral with different reducibility[J]. CIESC Journal, 2019, 70(8): 2946-2953. | |
4 | Roberts M J, Everson R C, Neomagus H W J P, et al. The characterisation of slow-heated inertinite- and vitrinite-rich coals from the South African coalfields[J]. Fuel, 2015, 158(5): 591-601. |
5 | Yang Q, Chang H, Du S, et al. Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal[J]. Journal of Fuel Chemistry and Technology, 2015, 24(4): 405-418. |
6 | Chang H, Deng H, Yang Q, et al. Interaction of vitrinite and inertinite of Bulianta coal in pyrolysis[J]. Fuel, 2017, 207(3): 643-649. |
7 | Wang S, Tang Y, Schobert H H, et al. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100(2): 75-80. |
8 | Das T K. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals[J]. Fuel, 2001, 80(4): 489-500. |
9 | Das T K. Thermogravimetric characterisation of maceral concentrates of Russian coking coals[J]. Fuel, 2001, 80(1): 97-106. |
10 | Wang J, Du J, Chang L, et al. Study on the structure and pyrolysis characteristics of Chinese western coals[J]. Fuel Processing Technology, 2010, 91(4): 430-433. |
11 | Sun Q, Li W, Li B Q. The synergistic effect between macerals during pyrolysis[J]. Fuel, 2002, 81(7): 973-974. |
12 | Sun Q, Li W, Chen H, et al. Thermogravimetric-mass spectrometric study of the pyrolysis behavior of Shenmu macerals under hydrogen and argon[J]. Energy Sources, Part A, 2006, 28(14): 1281-1294. |
13 | Sun Q, Li W, Chen H, et al. Devolatilization characteristics of Shenmu coal macerals and kinetic analysis[J]. Energy Sources, Part A, 2006, 28(9): 865-874. |
14 | Sun Q, Li W, Chen H. The synergistic effect between coal macerals during hydropyrolysis[J]. Energy Sources, 2007, 29(2): 125-132. |
15 | Zhao Y, Hu H, Jin L, et al. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG–MS and in a fixed bed reactor[J]. Fuel Processing Technology, 2011, 92(4): 780-786. |
16 | 杨群, 常海洲, 杜帅, 等. 五彩湾煤镜质组与惰质组在热解中的相互作用[J]. 燃料化学学报, 2015, 43(11): 1295-1302. |
Yang Q, Chang H Z, Du S, et al. Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1295-1302. | |
17 | Feng Z, Bai Z, Zheng H, et al. Study on the pyrolysis characteristic of mild liquefaction solid product of Hami coal and CO2 gasification of its char[J]. Fuel, 2019, 253: 1034-1041. |
18 | 冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531. |
Feng W, Gao H F, Wang G, et al. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC Journal, 2019, 70(4): 1522-1531. | |
19 | Yan J, Jiao H, Li Z, et al. Kinetic analysis and modeling of coal pyrolysis with model-free methods[J]. Fuel, 2019, 241: 382-391. |
20 | Casal M D, Vega M F, Diaz-Faes E, et al. The influence of chemical structure on the kinetics of coal pyrolysis[J]. International Journal of Coal Geology, 2018, 195: 415-422. |
21 | Song H, Liu G, Zhang J, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 2016, 157: 454-460. |
22 | 邹达, 白翔, 李显, 等. 新疆和丰煤分段热解过程中产物组成的演变规律[J]. 煤炭学报, 2018, 43(3): 846-854. |
Zou D, Bai X, Li X, et al. Composition and structure evolution characteristics of product from segmenting pyrolysis of Xinjiang Hefeng coal[J]. Journal of China Coal Society, 2018, 43(3): 846-854. | |
23 | Lei S, Liu Q, Guo X, et al. Pyrolysis behavior and bonding information of coal — a TGA study[J]. Fuel Processing Technology, 2013, 108(6): 125-132. |
24 | Zhang L, Hower J C, Liu W L. Non-isothermal TG-DSC study on prediction of caking properties of vitrinite-rich concentrates of bituminous coals[J]. Fuel Processing Technology, 2017, 156: 500-504. |
25 | Wang Y G, Wei X Y, Wang S K, et al. Structural evaluation of Xiaolongtan lignite by direct characterization and pyrolytic analysis[J]. Fuel Processing Technology, 2016, 144: 248-254. |
26 | Zhou Y, Li L, Jin L, et al. Pyrolytic behavior of coal-related model compounds connected with C—C bridged linkages by in-situ pyrolysis vacuum ultraviolet photoionization mass spectrometry[J]. Fuel, 2019, 241: 533-541. |
27 | 李首毅, 林雄超, 鲁倍倍, 等. 矿物质对高碱煤显微组分热解特性的影响[J]. 化工进展, 2019, 38(8): 3650-3657. |
Li S Y, Lin X C, Lu B B, et al. Effects of minerals on pyrolysis characteristics of maceral in high-alkali coal[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3650-3657. | |
28 | Shi Z, Jin L, Zhou Y, et al. Online analysis of initial volatile products of Shenhua coal and its macerals with pyrolysis vacuum ultraviolet photoionization mass spectrometry[J]. Fuel Processing Technology, 2017, 163: 67-74. |
29 | Jin L, Han K, Wang J, et al. Direct liquefaction behaviors of Bulianta coal and its macerals[J]. Fuel Processing Technology, 2014, 128: 232-237. |
30 | Han F, Meng A, Li Q, et al. Thermal decomposition and evolved gas analysis (TG-MS) of lignite coals from Southwest China[J]. Journal of the Energy Institute, 2016, 89(1): 94-100. |
31 | Zou C, Ma C, Zhao J, et al. Characterization and non-isothermal kinetics of Shenmu bituminous coal devolatilization by TG-MS[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 309-320. |
32 | Xu Y, Zhang Y, Wang Y, et al. Gas evolution characteristics of lignite during low temperature pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 625-631. |
33 | 常海洲, 王传格, 曾凡桂, 等. 不同还原程度煤显微组分组表面结构XPS对比分析[J]. 燃料化学学报, 2006, 34(4): 389-394. |
Chang H Z, Wang C G, Zeng F G, et al. XPS comparative analysis of coal macerals with different reducibility[J]. Journal of Fuel Chemistry and Technology, 2006, 34(4): 389-394. | |
34 | Jayaraman K, Kok M V, Gokalp I. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends[J]. Renewable Energy, 2017, 101: 293-300. |
35 | Guo Z, Zhang L, Wang P, et al. Study on kinetics of coal pyrolysis at different heating rates to produce hydrogen[J]. Fuel Processing Technology, 2013, 107: 23-26. |
36 | Zhu C, Xie Q, Zhong J, et al. Effects of hydrothermal treatment on oxygen functional groups and pyrolysis characteristics of a vitrinite-rich low rank coal[J]. Asia-Pacific Journal of Chemical Engineering, 2019, 12: 1-13. |
37 | Niu Z, Liu G, Yin H, et al. Devolatilization behaviour and pyrolysis kinetics of coking coal based on the evolution of functional groups[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 351-361. |
38 | Zhang L, Hower J C, Liu W. Devolatilization and kinetics of maceral concentrates of bituminous coals[J]. Fuel Processing Technology, 2016, 154: 147-155. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[4] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[5] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[6] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[7] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[8] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[9] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
[10] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[11] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
[12] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[13] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[14] | Tong ZHANG, Yang YANG, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. Effect of catalyst distribution on the performance characteristics of microfluidic fuel cell with flow-through anode [J]. CIESC Journal, 2022, 73(9): 4156-4162. |
[15] | Huihuang FANG, Jinxing CHENG, Yu LUO, Chongqi CHEN, Chen ZHOU, Lilong JIANG. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells [J]. CIESC Journal, 2022, 73(9): 3802-3814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||