1 |
Cao S, Yu J. g-C3N4-based photocatalysts for hydrogen generation[J]. The Journal of Physical Chemistry Letters, 2014, 5(12): 2101-2107.
|
2 |
Liang Z Q, Sun B T, Xu X S, et al. Metallic 1T-phase MoS2 quantum dots/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution[J]. Nanoscale, 2019, 11: 12266-12274.
|
3 |
Tong Z, Yang D, Shi J, et al. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance[J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25693-25701.
|
4 |
Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?[J]. Chem. Rev., 2016, 116(12): 7159-7329.
|
5 |
Wang J C, Yao H C, Fan Z Y, et al. Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3765-3775.
|
6 |
Xue J, Ma S, Zhou Y, et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9630-9637.
|
7 |
柳璐, 张文, 王宇新. 石墨相氮化碳的可控制备及其在能源催化中的应用[J]. 化工学报, 2018, 69(11): 4577-4591.
|
|
Liu L, Zhang W, Wang Y X. Graphitic carbon nitride materials: controllable preparations and applications in energy catalysis[J]. CIESC Journal, 2018, 69(11): 4577-4591.
|
8 |
Fontelles-Carceller O, Muñoz-Batista M J, Fernández-García M, et al. Interface effects in sunlight-driven Ag/g-C3N4 composite catalysts: study of the toluene photodegradation quantum efficiency[J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2617-2627.
|
9 |
Yang X, Chen Z, Xu J, et al. Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15285-15293.
|
10 |
Zhu Y P, Ren T Z, Yuan Z Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16850-16856.
|
11 |
Xiong T, Cen W, Zhang Y, et al. Bridging the g-C3N4 interlayers for enhanced photocatalysis[J]. ACS Catalysis, 2016, 6(4): 2462-2472.
|
12 |
Gu Q, Gao Z, Xue C. Self-sensitized carbon nitride microspheres for long-lasting Visible-Light-Driven hydrogen generation[J]. Small, 2016, 12(26): 3543-3549.
|
13 |
Li Q, Wang S C, Sun Z X, et al. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4[J]. Nano Research, 2019, 12(11): 2749-2759.
|
14 |
Zhang X, Peng T, Yu L, et al. Visible/near-infrared-light-induced H2 production over g-C3N4 co-sensitized by organic dye and zinc phthalocyanine derivative[J]. ACS Catalysis, 2014, 5(2): 504-510.
|
15 |
Fu J, Yu J, Jiang C, et al. g‐C3N4‐based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 1701503.
|
16 |
何志桥, 陈锦萍, 童丽丽, 等. BiOCl/g-C3N4异质结催化剂可见光催化还原CO2[J]. 化工学报, 2016, 67(11): 4634-4642.
|
|
He Z J, Chen J P, Tong L L, et al. BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2[J]. CIESC Journal, 2016, 67(11): 4634-4642.
|
17 |
Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science, 2015, 347(6225): 970-974.
|
18 |
Fang S, Xia Y, Lv K, et al. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4[J]. Applied Catalysis B: Environmental, 2016, 185: 225-232.
|
19 |
Xu D, Cheng B, Wang W, et al. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B: Environmental, 2018, 231: 368-380.
|
20 |
Wang R, Kong X, Zhang W, et al. Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures[J]. Applied Catalysis B: Environmental, 2018, 225: 228-237.
|
21 |
张亚婷, 周安宁, 张晓欠, 等. 以太西无烟煤为前体制备煤基石墨烯的研究[J]. 煤炭转化, 2013, 36(4): 57-61.
|
|
Zhang Y T, Zhou A N, Zhang X Q, et al. Preparation of the graphene from Taixi anthracite[J]. Coal Conversion, 2013, 36(4): 57-61.
|
22 |
Byamba-Ochir N, Shim W G, Balathanigaimani M S, et al. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation[J]. Applied Surface Science, 2016, 379: 331-337.
|
23 |
Zhang Y T, Li K K, Ren S Z, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu (Ⅱ) detection[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9793-9799.
|
24 |
Hu C, Yu C, Li M, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection[J]. Small, 2014, 10(23): 4926-4933.
|
25 |
Ye R, Xiang C, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communications, 2013, 4: 2943.
|
26 |
Ong W J, Tan L L, Chai S P, et al. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane[J]. Nano Energy, 2015, 13: 757-770.
|
27 |
Li Y, Zhang H, Liu P, et al. Cross-Linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity[J]. Small, 2013, 9(19): 3336-3344.
|
28 |
Luo M L, Yang Q, Liu K W, et al. Boosting photocatalytic H2 evolution on g-C3N4 by modifying covalent organic frameworks (COFs)[J]. Chemical Communications, 2019, 55(41): 5829-5832.
|
29 |
Qian X Y, Meng X Q, Sun J W, et al. Salt-Assisted synthesis of 3D porous g-C3N4 as a bifunctional photo- and electrocatalyst[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27226-27232.
|
30 |
Zhao Y, Shalom M, Antonietti M. Visible light-driven graphitic carbon nitride (g-C3N4) photocatalyzed ketalization reaction in methanol with methylviologen as efficient electron mediator[J]. Applied Catalysis B: Environmental, 2017, 207: 311-315.
|