CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3524-3537.DOI: 10.11949/0438-1157.20210046
• Reviews and monographs • Previous Articles Next Articles
LIU Yizheng1(),SHI Bin2,RAN Ling2,TANG Jun2,TAN Siping2,LIU Jiangtao2,ZHANG Peng1(),ZHAO Jinbao1,3()
Received:
2021-01-11
Revised:
2021-05-10
Online:
2021-07-05
Published:
2021-07-05
Contact:
ZHANG Peng,ZHAO Jinbao
刘一铮1(),石斌2,冉岭2,唐军2,谭思平2,刘江涛2,张鹏1(),赵金保1,3()
通讯作者:
张鹏,赵金保
作者简介:
刘一铮(1994—),男,硕士研究生,基金资助:
CLC Number:
LIU Yizheng, SHI Bin, RAN Ling, TANG Jun, TAN Siping, LIU Jiangtao, ZHANG Peng, ZHAO Jinbao. Research progress of molten salt electrolyte and separator materials for thermal batteries[J]. CIESC Journal, 2021, 72(7): 3524-3537.
刘一铮, 石斌, 冉岭, 唐军, 谭思平, 刘江涛, 张鹏, 赵金保. 热电池电解质与隔膜材料研究进展[J]. 化工学报, 2021, 72(7): 3524-3537.
Add to citation manager EndNote|Ris|BibTeX
1 | Cho J H, Im C N, Choi C H, et al. Thermal stability characteristics of high-power, large-capacity, reserve thermal batteries with pure Li and Li(Si) anodes[J]. Electrochimica Acta, 2020, 353: 136612. |
2 | 王传东, 刘勇, 石治国. 军用电池技术现状[J]. 电源技术, 2016, 40(10): 2098-2099. |
Wang C D, Liu Y, Shi Z G. Advance of battery technologies for missile applications[J]. Chinese Journal of Power Sources, 2016, 40(10): 2098-2099. | |
3 | Guidotti R A. Thermal batteries: a technology review and future directions[EB/OL]. 1995. [2021-01-11]. . |
4 | Guidotti R A, Masset P. Thermally activated (“thermal”) battery technology (Ⅰ): An overview[J]. Journal of Power Sources, 2006, 161(2): 1443-1449. |
5 | Kim I Y, Woo S P, Ko J, et al. Binder-free cathode for thermal batteries fabricated using FeS2 treated metal foam[J]. Frontiers in Chemistry, 2019, 7: 904. |
6 | Kaufmann S, Chagnon G. Thermal battery for aircraft emergency power[C]//IEEE 35th International Power Sources Symposium. Cherry Hill, NJ, USA, 1992: 227-230. |
7 | Dagarin B P, Taenaka R K, Stofel E J. Galileo probe battery system[J]. IEEE Aerospace and Electronic Systems Magazine, 1996, 11(6): 6-13. |
8 | Jiang W, Liu Z H, Kong Q S, et al. A high temperature operating nanofibrous polyimide separator in Li-ion battery[J]. Solid State Ionics, 2013, 232: 44-48. |
9 | Butler P, Wagner C, Guidotti R, et al. Long-life, multi-tap thermal battery development[J]. Journal of Power Sources, 2004, 136(2): 240-245. |
10 | 邓宏彬, 王超, 赵娜. 中小型智能弹药舵机系统设计与应用技术[M]. 北京: 国防工业出版社, 2016: 156. |
Deng H B, Wang C, Zhao N. Design of Small Intelligent Ammunition Sheering Gear System [M]. Beijing: National Defense Industry Press, 2016: 156. | |
11 | Masset P J, Guidotti R A. Thermal activated (“thermal”) battery technology (Ⅲa): FeS2 cathode material[J]. Journal of Power Sources, 2008, 177(2): 595-609. |
12 | Evangelista M G, José M F, Fernande s M de S R. Iron disulfide synthesis for thermal batteries applications[J]. Journal of Aerospace Technology and Management, 2020, (1): 50-53. |
13 | Yang Z T, Liu X J, Feng X L, et al. Hydrothermal synthesized micro/nano-sized pyrite used as cathode material to improve the electrochemical performance of thermal battery[J]. Journal of Applied Electrochemistry, 2014, 44(10): 1075-1080. |
14 | Choi Y, Ahn T Y, Ha S H, et al. Hydrothermally synthesized homogeneous Ni-Mo-S structures on Ni-foam cathodes for thermal batteries[J]. Chemical Communications (Cambridge, England), 2019, 55(51): 7300-7302. |
15 | Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 13-24. |
16 | Xie S, Deng Y F, Mei J, et al. Carbon coated CoS2 thermal battery electrode material with enhanced discharge performances and air stability[J]. Electrochimica Acta, 2017, 231: 287-293. |
17 | Xie Y L, Liu Z J, Ning H L, et al. Suppressing self-discharge of Li-B/CoS2 thermal batteries by using a carbon-coated CoS2 cathode[J]. RSC Advances, 2018, 8(13): 7173-7178. |
18 | Guidotti R A, Masset P J. Thermally activated (“thermal”) battery technology (Ⅳ): Anode materials[J]. Journal of Power Sources, 2008, 183(1): 388-398. |
19 | Cao Y, Li J, Yang P, et al. Electrochemical performance of NiCl2 with Br-free molten salt electrolyte in high power thermal batteries[J]. Science China Technological Sciences, 2021, 64(1): 91-97. |
20 | 张合, 李豪杰. 引信机构学[M]. 北京: 北京理工大学出版社, 2014: 189. |
Zhang H, Li H J. Fuze Mechanism[M]. Beijing: Beijing Insititute of Technology Press, 2014: 189. | |
21 | Guidotti R. Development history of Fe/KClO4 heat powders at Sandia and related aging issues for thermal batteries[R]. Office of Scientific and Technical Information (OSTI), 2001. |
22 | Guidotti R A, Odinek J, Reinhardt F W. Characterization of Fe/KClO4 heat powders and pellets[J]. Journal of Energetic Materials, 2006, 24(4): 271-305. |
23 | 张一弛. BN纤维复合隔膜的制备及其在Li-FeS2/CoS2热电池中的性能研究[D]. 武汉: 武汉理工大学, 2016. |
Zhang Y C. Preparation of BN fiber separator and application of bn fiber separator in Li-FeS2/CoS2 thermal battery[D]. Wuhan: WuhanUniversity of Technology, 2016. | |
24 | Masset P J, Guidotti R A. Thermal activated (“thermal”) battery technology (Ⅲb): Sulfur and oxide-based cathode materials[J]. Journal of Power Sources, 2008, 178(1): 456-466. |
25 | Masset P, Schoeffert S, Poinso J Y, et al. Retained molten salt electrolytes in thermal batteries[J]. Journal of Power Sources, 2005, 139(1/2): 356-365. |
26 | Masset P, Guidotti R A. Thermal activated (thermal) battery technology (Ⅱ): Molten salt electrolytes[J]. Journal of Power Sources, 2007, 164(1): 397-414. |
27 | Chase M W, Curnutt J L, McDonald R A, et al. JANAF thermochemical tables, 1978 supplement[J]. Journal of Physical and Chemical Reference Data, 1978, 7(3): 793-940. |
28 | van Artsdalen E R, Yaffe I S. Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI[J]. The Journal of Physical Chemistry, 1955, 59(2): 118-127. |
29 | Janz G J, Tomkins R P T, Allen C B, et al. Molten salts: volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1975, 4(4): 871-1178. |
30 | 何德军, 刘鸿雁. 导弹主电源技术的发展[J]. 兵器材料科学与工程, 2009, 32(1): 93-96. |
He D J, Liu H Y. Development of primary battery for missile[J]. Ordnance Material Science and Engineering, 2009, 32(1): 93-96. | |
31 | Masset P J. Thermal stability of FeS2 cathode material in “thermal” batteries: effect of dissolved oxides in molten salt electrolytes[J]. Zeitschrift Für Naturforschung A, 2008, 63(9): 596-602. |
32 | Sangster J, Pelton A D. Phase diagrams and thermodynamic properties of the 70 binary alkali halide systems having common ions[J]. Journal of Physical and Chemical Reference Data, 1987, 16(3): 509-561. |
33 | Masset P, Henry A, Poinso J Y, et al. Ionic conductivity measurements of molten iodide-based electrolytes[J]. Journal of Power Sources, 2006, 160(1): 752-757. |
34 | Selman J R, DeNuccio D K, Sy C J, et al. EMF studies of lithium-rich lithium-aluminum alloys for high-energy secondary batteries[J]. Journal of the Electrochemical Society, 1977, 124(8): 1160-1164. |
35 | Fujiwara S, Kato F, Watanabe S, et al. New iodide-based molten salt systems for high temperature molten salt batteries[J]. Journal of Power Sources, 2009, 194(2): 1180-1183. |
36 | Johnson C E, Hathaway E, Crouthamel C E. Lithium hydride systems. Solid-liquid phase equilibria for the ternary lithium hydride-lithium chloride-lithium fluoride system[J]. Journal of Chemical & Engineering Data, 1966, 11(3): 372-374. |
37 | Johnson C E, Foster M S. Phase equilibrium studies of lithium halide-containing electrolytes[J]. Journal of the Electrochemical Society, 1969, 116(11): 1612. |
38 | Masset P. Iodide-based electrolytes: a promising alternative for thermal batteries[J]. Journal of Power Sources, 2006, 160(1): 688-697. |
39 | Masset P, Schoeffert S, Poinso J Y, et al. LiF-LiCl-LiI vs. LiF-LiBr-KBr as molten salt electrolyte in thermal batteries[J]. Journal of the Electrochemical Society, 2005, 152(2): A405. |
40 | 赵亚旭, 白鑫涛, 邢永慧, 等. LiF-LiCl-LiBr-KCl电解质在长工作时间热电池中的应用研究[J]. 电源技术, 2018, 42(7): 1040-1041, 1071. |
Zhao Y X, Bai X T, Xing Y H, et al. Application of LiF-LiCl-LiBr-KCl electrolyte in long working time thermal batteries[J]. Chinese Journal of Power Sources, 2018, 42(7): 1040-1041, 1071. | |
41 | Yazdani A, Sanghadasa M, Botte G G. Ionic conductivity and thermal stability of lithium salt / potassium bifluoride electrolytes for thermal batteries[J]. Journal of Power Sources, 2020, 453: 227854. |
42 | Fujiwara S, Inaba M, Tasaka A. New molten salt systems for high-temperature molten salt batteries: LiF-LiCl-LiBr-based quaternary systems[J]. Journal of Power Sources, 2010, 195(22): 7691-7700. |
43 | Guidotti R A, Reinhardt F W, Odinek J. Overview of high-temperature batteries for geothermal and oil/gas borehole power sources[J]. Journal of Power Sources, 2004, 136(2): 257-262. |
44 | Janz G J, Tomkins R P T, Allen C B, et al. Molten salts: volume 4, Part 3, bromides and mixtures; iodides and mixtures—electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1977, 6(2): 409-596. |
45 | Cairns E J, Dunning J S. High-temperature batteries[J]. Progress in High Temperature Physics and Chemistry, 1976, 5: 63-124. |
46 | Siegler T D, Reimnitz L C, Suri M, et al. Deliquescent chromism of nickel(Ⅱ) iodide thin films[J]. Langmuir, 2019, 35(6): 2146-2152. |
47 | Rudo K, Hartwig P, Weppner W. Ionic conductivities and phase equilibria of the lithium iodide hydrates[J]. Pascal and Francis Bibliographic Databases, 1980, 17(4): 420-429. |
48 | Melnichak M E, Kleppa O J. Enthalpies of mixing in binary liquid alkali iodide mixtures[J]. The Journal of Chemical Physics, 1970, 52(4): 1790-1794. |
49 | 王传东. 热电池发展综述[J]. 电源技术, 2013, 37(11): 2077-2079. |
Wang C D. Development of thermal battery[J]. Chinese Journal of Power Sources, 2013, 37(11): 2077-2079. | |
50 | 李彦, 余杨敏, 李鹏, 等. LiNO3-KNO3二元混合硝酸盐热稳定性分析[J]. 上海电力学院学报, 2018, 34(1): 37-40. |
Li Y, Yu Y M, Li P, et al. Thermal stability analysis of LiNO3-KNO3 binary mixed nitrates[J]. Journal of Shanghai University of Electric Power, 2018, 34(1): 37-40. | |
51 | Mantha D, Wang T, Reddy R G. Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3-NaNO2 quaternary system[J]. Solar Energy Materials and Solar Cells, 2013, 118: 18-21. |
52 | Zhang Y Y, Zhao Y H, Niu Y Q, et al. Halide and nitrate electrolytes of thermal batteries[J]. Journal of Energy Engineering, 2021, 147(3): 03121002. |
53 | Niu Y Q, Wu Z, Du J L, et al. Discharge behavior of Li-Mg-B alloy/MnO2 couples with LiNO3-KNO3-Mg(OH)NO3 eutectic electrolyte[J]. Electrochimica Acta, 2014, 115: 607-611. |
54 | Niu Y Q, Wu Z, Du J L, et al. Characterization of Li-Mg-B alloy/LiNO3-KNO3-KNO2-Ca(NO3)2/MnO2 system for potential use as geothermal and oil/gas borehole battery[J]. Solid State Ionics, 2014, 255: 80-83. |
55 | Guidotti R A, Reinhardt F W. Characterization of electrolyte-binder mixes for use in thermal batteries[J]. Battery Development Division Sandia National Laboratories, 1991. |
56 | Inada T, Takada K, Kajiyama A, et al. Silicone as a binder in composite electrolytes[J]. Journal of Power Sources, 2003, 119/120/121: 948-950. |
57 | Mathers J P, Boquist C W, Olszanski T W. Powder electrode separators for high temperature lithium‐aluminum/iron sulfide batteries[J]. Journal of The Electrochemical Society, 1978, 125(12): 1913-1918. |
58 | Guidotti R A, Reinhardt W. Characterization of MgO powders for use in thermal batteries[R]. Office of Scientific and Technical Information (OSTI), 1996. |
59 | 陈斐, 张一弛, 黄梅, 等. 一种含有空心氧化镁粉的热电池电解质的制备方法: 105789653B[P]. 2019-01-29. |
Chen F, Zhang Y C, Huang M, et al. Preparation method of thermal battery electrolyte containing hollow magnesia powder: 105789653B[P]. 2019-01-29. | |
60 | 杨潇薇, 宋学兵, 兰伟, 等. 锂系热电池中电解质黏合剂MgO的优选[J]. 电源技术, 2017, 41(12): 1753-1756. |
Yang X W, Song X B, Lan W, et al. Choice of MgO powders for immobilizing electrolyte in lithium-thermal battery[J]. Chinese Journal of Power Sources, 2017, 41(12): 1753-1756. | |
61 | Zhang P, Liu J S, Yang Z T, et al. Using MgO fibers to immobilize molten electrolyte in thermal batteries[J]. Journal of Solid State Electrochemistry, 2016, 20(5): 1355-1360. |
62 | Zhang P, Liu J S, Yang Z T, et al. Synthesis of porous magnesia fibers with enhanced performance as a binder for molten electrolyte[J]. Electrochimica Acta, 2017, 230: 358-364. |
63 | Liu X B, Liu J S, Liu X J, et al. Porous magnesia fibers as an immobilizing agent for molten salt in thermal batteries[J]. Journal of the Electrochemical Society, 2016, 163(5): A617-A623. |
64 | Zeng M S, Liu J S, Yang Z T, et al. Ion transport in MgO porous fibers retained molten salt electrolytes for thermal batteries[J]. Journal of the Electrochemical Society, 2018, 165(5): A736-A740. |
65 | Huang X R, Liu J S, Zeng M S, et al. Effects of different MgO fiber structures on adhesive capacity and ionic migration of Li-Si/LiCl-KCl/FeS2 thermal batteries[J]. Electrochimica Acta, 2019, 324: 134918. |
66 | Zhang L L, Han P D, Zhang C L, et al. Density functional theory study on the stability and electronic properties of MgF2 surfaces[J]. Acta Physico-Chimica Sinica, 2011, 27(7): 1609-1614. |
67 | 牛怀成, 李利春, 李瑛, 等. 高比表面积氟化镁的合成及其在催化中的应用研究进展[J]. 化工进展, 2012, 31(7): 1484-1492. |
Niu H C, Li L C, Li Y, et al. Progress of preparation and catalytic application of magnesium fluoride with high surface area[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1484-1492. | |
68 | Czajka B, Zieliński M, Wojciechowska M, et al. Modification of MgO as an immobilizing agent for molten electrolyte[J]. Journal of Solid State Electrochemistry, 2014, 18(8): 2351-2358. |
69 | Kang S H, Chae S H, Cheong H W, et al. Thermal batteries with ceramic felt separators (Ⅱ): Ionic conductivity, electrochemical and mechanical properties[J]. Ceramics International, 2017, 43(5): 4023-4028. |
70 | 沈冬艳, 杨少华, 骆柬氽, 等. 热电池MgO改性石棉纤维隔膜的研究[J]. 功能材料, 2015, 46(22): 22054-22057. |
Shen D Y, Yang S H, Luo J T, et al. Study on MgO modified asbestos paper separator for thermal batteries[J]. Journal of Functional Materials, 2015, 46(22): 22054-22057. | |
71 | Swaroop R B, Battles J E. Development of BN felt separator for Li-Al/MSx battery[J]. Journal of the Electrochemical Society, 1981, 128(9): 1873-1877. |
72 | 唐杰, 张铭霞, 栾强, 等. 热电池用氮化硼纤维基复合隔膜的研制及性能研究[J]. 现代技术陶瓷, 2017, 38(3): 197-203. |
Tang J, Zhang M X, Luan Q, et al. Fabrication and properties of boron nitride fiber based composite separator for thermal battery[J]. Advanced Ceramics, 2017, 38(3): 197-203. | |
73 | Mathers J P, Olszanski T W, Battles J E. Evaluation of porous paper and felt ceramics for electrode separators in high temperature Li - Al / LiCl - KCl/FeSx cells[J]. Journal of the Electrochemical Society, 1977, 124(8): 1149-1154. |
74 | Chae S H, Kang S H, Cheong H W, et al. Thermal batteries with ceramic felt separators (Ⅰ): Wetting, loading behavior and chemical stability[J]. Ceramics International, 2017, 43(5): 4015-4022. |
75 | 张鹏, 赵金保, 刘一铮. 一种熔融盐复合电解质隔膜、制备方法及应用: 110690397A[P]. 2020-01-14. |
Zhang P, Zhao J B, Liu Y Z. Molten salt composite electrolyte diaphragm and preparation method and application thereof: 110690397A[P]. 2020-01-14. | |
76 | Feih S, Manatpon K, Mathys Z, et al. Strength degradation of glass fibers at high temperatures[J]. Journal of Materials Science, 2009, 44(2): 392-400. |
77 | Liang C H, Meng G W, Zhang L D, et al. Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles[J]. Chemical Physics Letters, 2000, 329(3/4): 323-328. |
78 | Gulden T D. Mechanical properties of polycrystalline β-sic[J]. Journal of the American Ceramic Society, 1969, 52(11): 585-590. |
79 | Lu P, Huang Q, Mukherjee A, et al. Effects of polymer matrices to the formation of silicon carbide (SiC) nanoporous fibers and nanowires under carbothermal reduction[J]. J. Mater. Chem., 2011, 21(4): 1005-1012. |
80 | Kern E L, Hamill D W, Deem H W, et al. Thermal properties of β-silicon carbide from 20 to 2000℃[M]//Silicon Carbide–1968. Amsterdam: Elsevier, 1969: S25-S32. |
81 | Wang Z B, Iizuka T, Kozako M, et al. Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength (Ⅰ):Sample preparations and thermal conductivity[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(6): 1963-1972. |
82 | Whittemore O J, Ault N N. Thermal expansion of various ceramic materials to 1500℃[J]. Journal of the American Ceramic Society, 1956, 39(12): 443-444. |
83 | Gielisse P J, Mitra S S, Plendl J N, et al. Lattice infrared spectra of boron nitride and boron monophosphide[J]. Physical Review, 1967, 155(3): 1039. |
84 | Slack G A, Bartram S F. Thermal expansion of some diamondlike crystals[J]. Journal of Applied Physics, 1975, 46(1): 89-98. |
85 | Sim L C, Ramanan S R, Ismail H, et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes[J]. Thermochimica Acta, 2005, 430(1/2): 155-165. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[11] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[12] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[13] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[14] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[15] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||