CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 3876-3904.DOI: 10.11949/0438-1157.20200573
• Reviews and monographs • Previous Articles Next Articles
Ling ZHANG(),Hongmei CHEN,Zidong WEI()
Received:
2020-04-30
Revised:
2020-07-16
Online:
2020-09-05
Published:
2020-09-05
Contact:
Zidong WEI
通讯作者:
魏子栋
作者简介:
张伶(1991—),男,博士研究生,基金资助:
CLC Number:
Ling ZHANG, Hongmei CHEN, Zidong WEI. Recent advance in transition metal oxide-based materials for oxygen evolution reaction electrocatalysts[J]. CIESC Journal, 2020, 71(9): 3876-3904.
张伶, 陈红梅, 魏子栋. 过渡金属氧化物催化析氧反应研究进展[J]. 化工学报, 2020, 71(9): 3876-3904.
Add to citation manager EndNote|Ris|BibTeX
1 | Penner S S. Steps toward the hydrogen economy [J]. Energy, 2006, 31(1): 33-43. |
2 | Zhuang L P. N-doped carbon as an efficient anti-poisoning catalyst against SOx, NOx and POx during oxygen reduction in acidic media[J]. Acta Physico-Chimica Sinica, 2019, 35(7): 659-660. |
3 | Najam T, Shah S S A, Ding W, et al. An efficient anti-poisoning catalyst against SOx, NOx, and POx: P, N-doped carbon for oxygen reduction in acidic media [J]. Angewandte Chemie International Edition, 2018, 57(46): 15101-15106. |
4 | Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century: a sustainable development scenario [J]. International Journal of Hydrogen Energy, 2003, 28(3): 267-284. |
5 | Bockris J O M. The hydrogen economy: its history [J]. International Journal of Hydrogen Energy, 2013, 38(6): 2579-2588. |
6 | Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds [J]. Chemical Reviews, 2010, 110(11): 6474-6502. |
7 | Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells [J]. Chemical Reviews, 2010, 110(11): 6446-6473. |
8 | Du H, Kong R M, Guo X, et al. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution [J]. Nanoscale, 2018, 10(46): 21617-21624. |
9 | Liu T, Liu D, Qu F, et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter [J]. Advanced Energy Materials, 2017, 7(15): 1700020-1700028. |
10 | Tang C, Zhang R, Lu W, et al. Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation [J]. Advanced Materials, 2017, 29(2): 201602441- 201602446. |
11 | Tang C, Gan L, Zhang R, et al. Ternary FexCo1-xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight [J]. Nano Letter, 2016, 16(10): 6617-6621. |
12 | Liu T, Ma X, Liu D, et al. Mn doping of CoP nanosheets array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values [J]. ACS Catalysis, 2016, 7(1): 98-102. |
13 | Shi Q, Zhu C, Du D, et al. Robust noble metal-based electrocatalysts for oxygen evolution reaction [J]. Chemical Society Reviews, 2019, 48(12): 3181-3192. |
14 | Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+ [J]. Science, 2008, 321(5892): 1072-1075. |
15 | Li B Q, Tang C, Wang H F, et al. An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance [J]. Science Advances, 2016, 2(10): 1600495-1600501. |
16 | Wang X, Pan Z, Chu X, et al. Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co3O4/La0.3Sr0.7CoO3 [J]. Angewandte Chemie International Edition, 2019, 58(34): 11720-11725. |
17 | Zhang R, Dubouis N, Ben Osman M, et al. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media [J]. Angewandte Chemie International Edition, 2019, 58(14): 4571-4575. |
18 | Wang H, Wang J, Pi Y, et al. Double perovskite LaFexNi1-xO3 nanorods enable efficient oxygen evolution electrocatalysis [J]. Angewandte Chemie International Edition, 2019, 58(8): 2316-2320. |
19 | Kim B J, Fabbri E, Abbott D F, et al. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction [J]. Journal of the American Chemical Society, 2019, 141(13): 5231-5240. |
20 | Lee J G, Hwang J, Hwang H J, et al. A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3 and BaNi0.83O2.5 [J]. Journal of the American Chemical Society, 2016, 138(10): 3541-3547. |
21 | Vojvodic A, Nørskov J K. Optimizing perovskites for the water-splitting reaction [J]. Science, 2011, 334(6061): 1355-1356. |
22 | Xu X, Chen Y, Zhou W, et al. A perovskite electrocatalyst for efficient hydrogen evolution reaction [J]. Advanced Materials, 2016, 28(30): 6442-6448. |
23 | Chen D, Qiao M, Lu Y R, et al. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction [J]. Angewandte Chemie International Edition, 2018, 57(28): 8691-8696. |
24 | Zhu Y, Zhou W, Chen Z G, et al. SrNb0.1Co0.7Fe0.2O3-δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution [J]. Angewandte Chemie International Edition, 2015, 54(13): 3897-3901. |
25 | Tong Y, Wu J, Chen P, et al. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution [J]. Journal of the American Chemical Society, 2018, 140(36): 11165-11169. |
26 | Kuznetsov D A, Naeem M A, Kumar P V, et al. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity [J]. Journal of the American Chemical Society, 2020, 142(17): 7883-7888. |
27 | Yu L, Yang J F, Guan B Y, et al. Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution [J]. Angewandte Chemie International Edition, 2018, 57(1): 172-176. |
28 | Chen X, Wang H, Xia B, et al. Noncovalent phosphorylation of CoCr layered double hydroxide nanosheets with improved electrocatalytic activity for the oxygen evolution reaction [J]. Chemical Communication, 2019, 55(80): 12076-12079. |
29 | Liang C, Zou P, Nairan A, et al. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting [J]. Energy & Environmental Science, 2020, 13(1): 86-95. |
30 | Wang Y, Qiao M, Li Y, et al. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction [J]. Small, 2018, 14(17): 1800136-1800141. |
31 | Zheng Z, Lin L, Mo S, et al. Economizing production of diverse 2D layered metal hydroxides for efficient overall water splitting [J]. Small, 2018, 14(24): 1800759-1800766. |
32 | Favaro M, Drisdell W S, Marcus M A, et al. An operando investigation of (Ni-Fe-Co-Ce)Ox system as highly efficient electrocatalyst for oxygen evolution reaction [J]. ACS Catalysis, 2017, 7(2): 1248-1258. |
33 | Lyu F, Bai Y, Li Z, et al. Self-templated fabrication of CoO-MoO2 nanocages for enhanced oxygen evolution [J]. Advanced Functional Materials, 2017, 27(34): 1702324-1702331. |
34 | Cherevko S, Geiger S, Kasian O, et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability [J]. Catalysis Today, 2016, 262(1): 170-180. |
35 | Ghadge S D, Velikokhatnyi O I, Datta M K, et al. Experimental and theoretical validation of high efficiency and robust electrocatalytic response of one-dimensional (1D) (Mn, Ir)O2: 10F nanorods for the oxygen evolution reaction in PEM-based water electrolysis [J]. ACS Catalysis, 2019, 9(3): 2134-2157. |
36 | Menezes P W, Walter C, Hausmann J N, et al. Boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach [J]. Angewandte Chemie International Edition, 2019, 58(46): 16569-16574. |
37 | Tesch M F, Bonke S A, Jones T E, et al. Evolution of oxygen-metal electron transfer and metal electronic states during manganese oxide catalyzed water oxidation revealed with in situ soft X-ray spectroscopy [J]. Angewandte Chemie International Edition, 2019, 58(11): 3426-3432. |
38 | Chen Z, Wang Z, Cai R, et al. NiMn compound nanosheets for electrocatalytic water oxidation: effects of atomic structures and oxidation states [J]. Nanoscale, 2020, 12(4): 2472-2478. |
39 | Chen R R, Sun Y, Ong S J H, et al. Antiferromagnetic inverse spinel oxide LiCoVO4 with spin-polarized channels for water oxidation [J]. Advanced Materials, 2020, 32(10): 1907976-1907983. |
40 | Mu C, Mao J, Guo J, et al. Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis [J]. Advanced Materials, 2020, 32(10): 1907168-1907175. |
41 | Zhang J, Shang X, Ren H, et al. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution [J]. Advanced Materials, 2019, 31(52): 1905107-1905116. |
42 | Zhou Y, Sun S, Song J, et al. Enlarged CoO covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction [J]. Advanced Materials, 2018, 30(32): 1802912-1802918. |
43 | Liu Z, Wang G, Zhu X, et al. Optimal geometrical configuration of cobalt cations in spinel oxides to promote oxygen evolution reaction [J]. Angewandte Chemie International Edition, 2020, 59(12): 4736-4742. |
44 | Li Y F, Liu Z P. Active site revealed for water oxidation on electrochemically induced delta-MnO2: role of spinel-to-layer phase transition [J]. Journal of the American Chemical Society, 2018, 140(5): 1783-1792. |
45 | Peng S, Gong F, Li L, et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis [J]. Journal of the American Chemical Society, 2018, 140(42): 13644-13653. |
46 | Wang H Y, Hung S F, Chen H Y, et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4 [J]. Journal of the American Chemical Society, 2016, 138(1): 36-39. |
47 | Kim T W, Woo M A, Regis M, et al. Electrochemical synthesis of spinel type ZnCo2O4 electrodes for use as oxygen evolution reaction catalysts [J]. Journal of Physical Chemistry Letters, 2014, 5(13): 2370-2374. |
48 | Liu Y, Ying Y, Fei L, et al. Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis [J]. Journal of the American Chemical Society, 2019, 141(20): 8136-8145 |
49 | Liu D, Zhang C, Yu Y, et al. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays [J]. Nano Research, 2017, 11(2): 603-613. |
50 | Sun M, Liu H, Liu Y, et al. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction [J]. Nanoscale, 2015, 7(4): 1250-1269. |
51 | Rossmeisl J, Logadottir A, Nørskov J K. Electrolysis of water on (oxidized) metal surfaces [J]. Chemical Physics, 2005, 319(1/2/3): 178-184. |
52 | Fabbri E, Habereder A, Waltar K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction [J]. Catalysis Science & Technology, 2014, 4(11): 3800-3821. |
53 | Yin Q, Tan J M, Besson C, et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals [J]. Science, 2010, 328(5976): 342-345. |
54 | Song Q, Xue Z, Liu C, et al. General strategy to optimize gas evolution reaction via assembled striped-pattern superlattices [J]. Journal of the American Chemical Society, 2020, 142(4): 1857-1863. |
55 | Man I C, Su H Y, Calle-Vallejo F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces [J]. ChemCatChem, 2011, 3(7): 1159-1165. |
56 | Voiry D, Chhowalla M, Gogotsi Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials [J]. ACS Nano, 2018, 12(10): 9635-9638. |
57 | Zhang L, Wang X, Zheng X, et al. Oxygen-incorporated NiMoP2 nanowire arrays for enhanced hydrogen evolution activity in alkaline solution [J]. ACS Applied Energy Materials, 2018, 1(10): 5482-5489. |
58 | Zhang L, Wang X, Li A, et al. Rational construction of macroporous CoFeP triangular plate arrays from bimetal–organic frameworks as high-performance overall water-splitting catalysts [J]. Journal of Materials Chemistry A, 2019, 7(29): 17529-17535. |
59 | Bard A J, Faulkner L R. Fundamentals and applications[J]. Electrochemical Methods, 2001, 2(482): 580-632. |
60 | Wei C, Sun S, Mandler D, et al. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity [J]. Chemical Society Reviews, 2019, 48(9): 2518-2534. |
61 | Herrero E, Buller L J, Abruña H D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials [J]. Chemical Reviews, 2001, 101(7): 1897-1930. |
62 | Green C L, Kucernak A. Determination of the platinum and ruthenium surface areas in platinum- ruthenium alloy electrocatalysts by underpotential deposition of copper(I): Unsupported catalysts [J]. The Journal of Physical Chemistry B, 2002, 106(5): 1036-1047. |
63 | Zhou Y, Xi S, Wang J, et al. Revealing the dominant chemistry for oxygen reduction reaction on small oxide nanoparticles [J]. ACS Catalysis, 2017, 8(1): 673-677. |
64 | Gerken J B, Shaner S E, Massé R C, et al. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal [J]. Energy & Environmental Science, 2014, 7(7): 2376-2382. |
65 | Zhang L, Li L, Chen H, et al. Recent progress in precious metal-free carbon-based materials towards the oxygen reduction reaction: activity, stability, and anti-poisoning [J]. Chemistry–A European Journal, 2020, 18(1): 3973-3990. |
66 | Lu Z, Xu W, Ma J, et al. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction [J]. Advanced Materials, 2016, 28(33): 7155-7161. |
67 | Nørskov J K, Abild-Pedersen F, Studt F, et al. Density functional theory in surface chemistry and catalysis [J]. Proceedings of the National Academy of Sciences, 2011, 108(3): 937-943. |
68 | Suntivich J, May K J, Gasteiger H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles [J]. Science, 2011, 334(6061): 1383-1385. |
69 | Ng J W D, García-Melchor M, Bajdich M, et al. Gold-supported cerium-doped NiOx catalysts for water oxidation [J]. Nature Energy, 2016, 1(5): 1-8. |
70 | Haber J A, Cai Y, Jung S, et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis [J]. Energy & Environmental Science, 2014, 7(2): 682-688. |
71 | Liardet L, Hu X. Amorphous cobalt vanadium oxide as a highly active electrocatalyst for oxygen evolution [J]. ACS Catalysis, 2018, 8(1): 644-650. |
72 | Tang T, Jiang W J, Niu S, et al. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting [J]. Journal of the American Chemical Society, 2017, 139(24): 8320-8328. |
73 | Wang X, Sun P, Lu H, et al. Aluminum-tailored energy level and morphology of Co3-xAlxO4 porous nanosheets toward highly efficient electrocatalysts for water oxidation [J]. Small, 2019, 15(11): 1804886-1804893. |
74 | Chen J Y, Dang L, Liang H, et al. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by mossbauer spectroscopy [J]. Journal of the American Chemical Society, 2015, 137(48): 15090-15093. |
75 | Stevens M B, Trang C D M, Enman L J, et al. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity [J]. Journal of the American Chemical Society, 2017, 139(33): 11361-11364. |
76 | Liu H, Gao X, Yao X, et al. Manganese(Ⅱ) phosphate nanosheet assembly with native out-of-plane Mn centres for electrocatalytic water oxidation [J]. Chemical Science, 2019, 10(1): 191-197. |
77 | Jiang J, Sun F, Zhou S, et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide [J]. Nature Communication, 2018, 9(1): 2885. |
78 | Shen F C, Wang Y, Tang Y J, et al. CoV2O6-V2O5 coupled with porous N-doped reduced graphene oxide composite as a highly efficient electrocatalyst for oxygen evolution [J]. ACS Energy Letters, 2017, 2(6): 1327-1333. |
79 | Fan K, Ji Y, Zou H, et al. Hollow iron-vanadium composite spheres: a highly efficient iron-based water oxidation electrocatalyst without the need for nickel or cobalt [J]. Angewandte Chemie International Edition, 2017, 56(12): 3289-3293. |
80 | Liu J, Ji Y, Nai J, et al. Ultrathin amorphous cobalt–vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction [J]. Energy & Environmental Science, 2018, 11(7): 1736-1741. |
81 | Fan K, Chen H, Ji Y, et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation [J]. Nature Communication, 2016, 7(1): 1-9. |
82 | Li P, Duan X, Kuang Y, et al. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation [J]. Advanced Energy Materials, 2018, 8(15): 1-8. |
83 | Yang Y, Dang L, Shearer M J, et al. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction [J]. Advanced Energy Materials, 2018, 8(15): 1-9. |
84 | Gerken J B, Shaner S E, Massé R C, et al. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal [J]. Energy & Environmental Science, 2014, 7(7): 2376-2382. |
85 | Zhao Y, Jia X, Chen G, et al. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst [J]. Journal of the American Chemical Society, 2016, 138(20): 6517-6524. |
86 | Huynh M, Ozel T, Liu C, et al. Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid [J]. Chemical Science, 2017, 8(7): 4779-4794. |
87 | Moreno-Hernandez I A, MacFarland C A, Read C G, et al. Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4 [J]. Energy & Environmental Science, 2017, 10(10): 2103-2108. |
88 | He H, Chen J, Zhang D, et al. Modulating the electrocatalytic performance of palladium with the electronic metal-support interaction: a case study on oxygen evolution reaction [J]. ACS Catalysis, 2018, 8(7): 6617-6626. |
89 | Wang X, Xiao H, Li A, et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions [J]. Journal of the American Chemical Society, 2018, 140(45): 15336-15341. |
90 | Zhao D, Pi Y, Shao Q, et al. Enhancing oxygen evolution electrocatalysis via the intimate hydroxide-oxide interface [J]. ACS Nano, 2018, 12(6): 6245-6251. |
91 | Feng J X, Ye S H, Xu H, et al. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction [J]. Advanced Materials, 2016, 28(23): 4698-4703. |
92 | Xu H, Cao J, Shan C, et al. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis [J]. Angewandte Chemie International Edition, 2018, 57(28): 8654-8658. |
93 | Zheng Y R, Gao M R, Gao Q, et al. An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation [J]. Small, 2015, 11(2): 182-188. |
94 | Zhao Y, Chang C, Teng F, et al. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting [J]. Advanced Energy Materials, 2017, 7(18): 1-7. |
95 | Li L, Feng X, Nie Y, et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2 [J]. ACS Catalysis, 2015, 5(8): 4825-4832. |
96 | Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction [J]. Angewandte Chemie International Edition, 2016, 55(17): 5277-5281. |
97 | Xu W, Lyu F, Bai Y, et al. Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction [J]. Nano Energy, 2018, 43(1): 110-116. |
98 | Zhuang L, Ge L, Yang Y, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction [J]. Advanced Materials, 2017, 29(17): 1-7. |
99 | Seitz L C, Dickens C F, Nishio K, et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction [J]. Science, 2016, 353(6303): 1011-1014. |
100 | Li B Q, Xia Z J, Zhang B, et al. Regulating p-block metals in perovskite nanodots for efficient electrocatalytic water oxidation [J]. Nature Communication, 2017, 8(1): 934-941. |
101 | Llordes A, Wang Y, Fernandez-Martinez A, et al. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing [J]. Nature Materials, 2016, 15(12): 1267-1273. |
102 | Zhang C, Zhang X, Daly K, et al. Water oxidation catalysis: tuning the electrocatalytic properties of amorphous lanthanum cobaltite through calcium doping [J]. ACS Catalysis, 2017, 7(9): 6385-6391. |
103 | Chen G, Zhou W, Guan D, et al. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofilms with tunable oxidation state [J]. Science Advances, 2017, 3(6): 1-9. |
104 | Salvatore D A, Dettelbach K E, Hudkins J R, et al. Near-infrared-driven decomposition of metal precursors yields amorphous electrocatalytic films [J]. Science Advances, 2015, 1(2): 1-7. |
105 | Liu J, Nai J, You T, et al. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction [J]. Small, 2018, 14(17): 1-8. |
106 | Grimaud A, Diaz-Morales O, Han B, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution [J]. Nature Chemistry, 2017, 9(5): 457-465. |
107 | Smith R D, Prevot M S, Fagan R D, et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis [J]. Science, 2013, 340(6128): 60-63. |
108 | Smith R D, Prevot M S, Fagan R D, et al. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel [J]. Journal of the American Chemical Society, 2013, 135(31): 11580-11586. |
109 | Zhang B, Zheng X, Voznyy O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts [J]. Science, 2016, 352(6283): 333-337. |
110 | Cai Z, Li L, Zhang Y, et al. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution [J]. Angewandte Chemie International Edition, 2019, 58(13): 4189-4194. |
111 | Chen G, Zhu Y, Chen H M, et al. An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction [J]. Advanced Materials, 2019, 31(28): 1-7. |
112 | Cho K H, Seo H, Park S, et al. Uniform, assembled 4 nm Mn3O4 nanoparticles as efficient water oxidation electrocatalysts at neutral pH [J]. Advanced Functional Materials, 2020, 30(10): 1910424. |
113 | Feng J X, Xu H, Dong Y T, et al. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction [J]. Angewandte Chemie International Edition, 2016, 55(11): 3694-3698. |
114 | Dong C, Kou T, Gao H, et al. Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting [J]. Advanced Energy Materials, 2018, 8(5): 1-9. |
115 | Lee W, Liu Y, Lee Y, et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging [J]. Nature Communication, 2018, 9(1): 1417-1425. |
116 | Li S, Wang Y, Peng S, et al. Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts [J]. Advanced Energy Materials, 2016, 6(3): 1-7. |
117 | Wu G, Chen W, Zheng X, et al. Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction [J]. Nano Energy, 2017, 38(1): 167-174. |
118 | Xia J, Zhao H, Huang B, et al. Efficient optimization of electron/oxygen pathway by constructing ceria/hydroxide interface for highly active oxygen evolution reaction [J]. Advanced Functional Materials, 2020, 30(9): 1-9. |
119 | Ma T Y, Dai S, Jaroniec M, et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes [J]. Journal of the American Chemical Society, 2014, 136(39): 13925-13931. |
120 | Wang X, Li Z, Wu D Y, et al. Porous cobalt-nickel hydroxide nanosheets with active cobalt ions for overall water splitting [J]. Small, 2019, 15(8): 1804832-1804840. |
121 | Qi J, Zhang W, Xiang R, et al. Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction [J]. Advance Science, 2015, 2(10): 1500199-1500206. |
122 | Ping J, Wang Y, Lu Q, et al. Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction [J]. Advanced Materials, 2016, 28(35): 7640-7645. |
123 | Li B Q, Zhang S Y, Tang C, et al. Anionic regulated NiFe (oxy)sulfide electrocatalysts for water oxidation [J]. Small, 2017, 13(25): 1700610-1700615. |
124 | Shi H, Liang H, Ming F, et al. Efficient overall water-splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres [J]. Angewandte Chemie International Edition, 2017, 56(2): 573-577. |
125 | Zhang R, Russo P A, Buzanich A G, et al. Hybrid organic-inorganic transition-metal phosphonates as precursors for water oxidation electrocatalysts [J]. Advanced Functional Materials, 2017, 27(40): 1703158-1703168. |
126 | Zhou P, Wang Y, Xie C, et al. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction [J]. Chemical Communication, 2017, 53(86): 11778-11781. |
127 | Guan J, Duan Z, Zhang F, et al. Water oxidation on a mononuclear manganese heterogeneous catalyst [J]. Nature Catalysis, 2018, 1(11): 870-877. |
128 | Huang J, Han J, Wang R, et al. Improving electrocatalysts for oxygen evolution using NixFe3–xO4/Ni hybrid nanostructures formed by solvothermal synthesis [J]. ACS Energy Letters, 2018, 3(7): 1698-1707. |
129 | Indra A, Paik U, Song T. Boosting electrochemical water oxidation with metal hydroxide carbonate templated prussian blue analogues [J]. Angewandte Chemie International Edition, 2018, 57(5): 1241-1245. |
130 | Luo X, Shao Q, Pi Y, et al. Trimetallic molybdate nanobelts as active and stable electrocatalysts for the oxygen evolution reaction [J]. ACS Catalysis, 2018, 9(2): 1013-1018. |
131 | Park S A, Kim K S, Kim Y T. Electrochemically activated iridium oxide black as promising electrocatalyst having high activity and stability for oxygen evolution reaction [J]. ACS Energy Letters, 2018, 3(5): 1110-1115. |
132 | Wang X, Yu L, Guan B Y, et al. Metal-organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution [J]. Advanced Materials, 2018, 30(29): 1801211-1801215. |
133 | Zhang K, Zhang G, Qu J, et al. Disordering the atomic structure of Co(II) oxide via B-doping: an efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts [J]. Small, 2018, 14(41): 1802760-1802768. |
134 | Zhou Q, Chen Y, Zhao G, et al. Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction [J]. ACS Catalysis, 2018, 8(6): 5382-5390. |
135 | Huang Z F, Song J, Du Y, et al. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts [J]. Nature Energy, 2019, 4(4): 329-338. |
136 | Lemoine K, Lhoste J, Hemon-Ribaud A, et al. Investigation of mixed-metal (oxy)fluorides as a new class of water oxidation electrocatalysts [J]. Chemical Science, 2019, 10(40): 9209-9218. |
137 | Shan J, Guo C, Zhu Y, et al. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media [J]. Chemistry, 2019, 5(2): 445-459. |
138 | Dong C, Zhang X, Xu J, et al. Ruthenium-doped cobalt-chromium layered double hydroxides for enhancing oxygen evolution through regulating charge transfer [J]. Small, 2020, 16(5): 1905328-1905334. |
139 | Kou Z, Yu Y, Liu X, et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation [J]. ACS Catalysis, 2020, 10(7): 4411-4419. |
140 | Ouyang T, Wang X T, Mai X Q, et al. Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction [J]. Angewandte Chemie International Edition, 2020, 59(29): 11948-11957. |
141 | Saha J, Verma S, Ball R, et al. Compositional control as the key for achieving highly efficient OER electrocatalysis with cobalt phosphates decorated nanocarbon florets [J]. Small, 2020, 16(12): 1903334-1903341. |
142 | Wang X P, Wu H J, Xi S B, et al. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting [J]. Energy & Environmental Science, 2020, 13(1): 229-237. |
143 | Zhu Y, Tahini H A, Hu Z, et al. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide [J]. Advanced Materials, 2020, 32(1): 1905025-1905032. |
144 | Lu X F, Gu L F, Wang J W, et al. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction [J]. Advanced Materials, 2017, 29(3): 1604437-1604443. |
145 | Zhao Q, Yang J, Liu M, et al. Tuning electronic push/pull of Ni-based hydroxides to enhance hydrogen and oxygen evolution reactions for water splitting [J]. ACS Catalysis, 2018, 8(6): 5621-5629. |
146 | Jin Y, Huang S, Yue X, et al. Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction [J]. ACS Catalysis, 2018, 8(3): 2359-2363. |
147 | Chi K, Tian X, Wang Q, et al. Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting [J]. Journal of Catalysis, 2020, 381: 44-52. |
148 | Chen P, Zhou T, Wang S, et al. Dynamic migration of surface fluorine anions on cobalt‐based materials to achieve enhanced oxygen evolution catalysis [J]. Angewandte Chemie International Edition, 2018, 57(47): 15471-15475. |
149 | Gou Y, Liu Q, Shi X, et al. CaMoO4 nanosheet arrays for efficient and durable water oxidation electrocatalysis under alkaline conditions [J]. Chemical Communications, 2018, 54(40): 5066-5069. |
150 | Gu W, Hu L, Zhu X, et al. Rapid synthesis of Co3O4 nanosheet arrays on Ni foam by in situ electrochemical oxidization of air-plasma engraved Co(OH)2 for efficient oxygen evolution [J]. Chemical Communication, 2018, 54(90): 12698-12701. |
151 | Liu J, Zheng Y, Wang Z, et al. Free-standing single-crystalline NiFe-hydroxide nanoflake arrays: a self-activated and robust electrocatalyst for oxygen evolution [J]. Chemical Communication, 2018, 54(5): 463-466. |
152 | Zhang B, Jiang K, Wang H, et al. Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst [J]. Nano Letter, 2019, 19(1): 530-537. |
153 | Ye Z, Li T, Ma G, et al. Metal-ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction [J]. Advanced Functional Materials, 2017, 27(44): 1704083-1704090. |
154 | Ge R, Li L, Su J, et al. Ultrafine defective RuO2 electrocatayst integrated on carbon cloth for robust water oxidation in acidic media [J]. Advanced Energy Materials, 2019, 9(35): 1901313-1901321. |
155 | Yu L, Zhou H, Sun J, et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting [J]. Energy & Environmental Science, 2017, 10(8): 1820-1827. |
156 | Han X B, Tang X Y, Lin Y, et al. Ultrasmall abundant metal-based clusters as oxygen-evolving catalysts [J]. Journal of the American Chemical Society, 2019, 141(1): 232-239. |
157 | Niu S, Jiang W J, Wei Z, et al. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation [J]. Journal of the American Chemical Society, 2019, 141(17): 7005-7013. |
158 | Xie L, Li X, Wang B, et al. Molecular engineering of a 3D self-supported electrode for oxygen electrocatalysis in neutral media [J]. Angewandte Chemie International Edition, 2019, 58(52): 18883-18887. |
159 | Kasian O, Grote J P, Geiger S, et al. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium [J]. Angewandte Chemie International Edition, 2018, 57(9): 2488-2491. |
160 | Geiger S, Kasian O, Ledendecker M, et al. The stability number as a metric for electrocatalyst stability benchmarking [J]. Nature Catalysis, 2018, 1(7): 508-515. |
161 | Speck F D, Dettelbach K E, Sherbo R S, et al. On the electrolytic stability of iron-nickel oxides [J]. Chemistry, 2017, 2(4): 590-597. |
162 | Chung D Y, Lopes P P, Farinazzo Bergamo Dias Martins P, et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction [J]. Nature Energy, 2020, 5(3): 222-230. |
163 | Obata K, Takanabe K. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts [J]. Angewandte Chemie International Edition, 2018, 57(6): 1616-1620. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[8] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[9] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[10] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[11] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[12] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[13] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[14] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[15] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||